

Ročník 2011 Číslo II

DISPLAY INSPECTION SYSTEM
T. Babinec 1, P. Cip1

1 Department of Control and Instrumentation, Faculty of Electrical Engineering and Communication, VUT, Brno,
Kolejni 2906/4, Brno

E-mail : xbabin01@stud.feec.vutbr.cz, xcippa00@stud.feec.vutbr.cz

Abstract:
Graphical user interfaces are often the best solution for creating an easy to use human machine interface. Their
development has an iterative character and requires periodical testing of the functionality and consistency of the
graphical output. This paper deals with the design of a semi-automated system for functionality and quality
inspection of graphical user interfaces in various devices and screen types. The presented approach is based on
image processing algorithms, which minimizes the need for human interaction during the test procedures.

INTRODUCTION

One of the essential characteristics of a modern
human machine interface (HMI) is the ability to
communicate with user in some graphical form. This
is due to the importance of visual perception among
other human senses.
It is a well know fact, that images have the ability to
express large amount of information in a very
efficient and easy to understand way. As a
consequence various sorts of electronic devices (e.g.
PDAs, cell phones, GPS, etc.) utilize one or more
graphical screens which can be based on a broad
variety of different technologies. Several the most
widespread technologies are the black&white fixed
segment and dot matrix displays, which are typical
for simple or low-end devices. Another important
group includes full-colour LCD (liquid crystal
displays), TFT (thin-film transistor) and OLED
(organic light emitting diode) displays. An example
of an unconventional but rather interesting screen
technology is the E-INK (electronic ink), which
significance and popularity among users has been
growing rapidly in the recent years.
The development and mass production of nowadays
complex electronic devices requires extensive
functionality and quality inspection. A very important
component of the inspection is the HMI evaluation,
which can be divided to hardware (HW) and software
(SW) oriented approaches. An example of inspection
system oriented on the detection of faulty HW
features is described in [1].
Completely different category of inspection
mechanism is required by end-user device
manufacturers and graphical user interface (GUI)
developers. Their never ending competition for better
looking, more user friendly and intelligent software
environments leads to extremely complex screen
content. The content is usually compiled from
sophisticated menu structures and other graphical
objects, which change dynamically according to
actual situation and user input.

Generally such GUI development requires repeated
fine adjustments to the SW structure, which may
cause unexpected behavioral and random errors in the
whole user interface. Therefore a rather extensive
check of GUI consistence and functionality is
required after every significant change in the SW.
The test procedures are monotonous and time
consuming. As long as they are performed by human
operators, the test results can be affected by
operator’s fatigue or other influences that are difficult
to evaluate. In order to minimize or completely
replace human interaction during the tests, an
automated inspection system has to be designed. In
[2] a method for automatic GUI inspection based on a
source code analysis has been presented.
This paper describes the design of a semiautomatic
inspection system based on computer vision
algorithms. The system enables analysis of already
displayed graphical information on various types of
screen devices.

SYSTEM DESIGN

In order to satisfy the development goals, which are
presented in the next subsection, a complete
inspection system including HW and SW components
had to be designed. The development was focused at
imitating humanlike behaviour during the testing
process. Therefore the system facilitates visual
evaluation together with the possibility of on-line
human input simulation as a reaction to currently
displayed information.

Requirements

� Maximum separation between the inspection
system and tested devices, which minimizes
mutual influence and error propagation.

� A simple way for rapid test procedure scripting,
provided by well organized programming
interface.

� An uncomplicated functionality expansion.

� Minimum need for human interaction.

Hardware set-up

As it is depicted in figure 1, the HW set-up of the
inspection system can be assembled from ordinary
components according to the specific needs of the
tested device. Basic HW element is an Imaging
Source industrial camera connected to a PC. In order
to be able to process colour information with a pixel
resolution sufficient for majority of various display
HMIs a 41BU02 camera model equipped with
1280x960 RGB CCD sensor with Bayer encoding
capable of 15 frames per second was used.
An adjustable stand ensures proper camera
positioning, which has to be adapted to available
optics and dimensions of the tested screen. For
stabilizing the lighting conditions or passive screen
(e.g. E-INK) inspection an additional light source
may be required.
Image processing and potential device control over
some input simulator module is accomplished by the
inspection SW installed on the PC workstation.

Fig. 1: Inspection system hardware set-up

Software environment

The implemented inspection SW has a modular
structure (see figure 2). For initial system calibration
and experiment set-up a “Screen Inspector SetUp”
module was created. Its purpose and functionality is
described more closely in the following section of
this paper. The communication with camera HW,
properties management and image grabbing is
implemented in the module “UsbCam”. To enable
online and automatic control of the inspected device a
custom built functionality represented by “Input
Simulator” module may be linked to the system.
The image processing core of the software
environment is hidden inside the three-level module.
The implemented computer vision functions are
based on the programming resources available from
OpenCV library [3]. High performance computer
vision algorithms are written in C/C++ language and
define the LowLevel part of the image processing
core. This functionality is wrapped inside the
HighLevel object hierarchy, which was created using
CLR C++ and is intended for .NET managed
environment. At the same time HighLevel objects and
methods represent a sort of a programming interface,
which allows fast and uncomplicated test procedure

scripting with full-featured programming languages
like C# and therefore satisfies one of the development
goals.

Fig. 2: Inspection software architecture

OPERATION & RESULTS

In order to ensure better results and deterministic
behavioural of the designed inspection system, a
system calibration is required before initiating the
actual test procedure. Implemented calibration
procedure, inspection functionality, achieved results
and proposed scheme for GUI content definition are
discussed in detail in the following subsections.

Fig. 3: Screen template (top) and its mask (bottom)

Display description

The expected GUI content is described using a XML
document, which is an essential part of every test
procedure. The XML structure is designed to achieve
the most flexible but at the same time simple way for

definition of hierarchical composition of graphical
objects.
The objects tested like screens, buttons, etc. are
divided into classes with specific behavioral, which is
described in the test script. Each basic screen element
has unique features described as a collection of ideal
bitmap templates (e.g. figure 3 top) combined with
detection masks (e.g. figure 3 bottom) and rectangle
coordinates defining areas intended for optical
character recognition (OCR). The detection mask is
an 8bit grayscale image with the same resolution as
the corresponding template. The meaning of region
differentiation will be explained further in the text.
Combination of these fundamental features and
information about screen element’s membership in
some defined parental object (panel, menu, screen…)
creates a coherent device GUI description. This
approach also enables simple functionality expansion.
Since display description is a rather specific and
device dependant matter, the inspection SW library
provides only elementary methods, which are
supposed to be used in order to derive more complex
functionality for detection and inspection of specific
screen objects. Thanks to this quality, the end-user is
able to independently boost the provided inspection
library with no or minimal support from the
inspection system developers.

System set-up and calibration

Individual steps of the system set-up and calibration
are illustrated in figures 3 and 4. Overall it is a semi-
automated procedure. The required operations are as
follows:

� Hardware set-up
» Adjustment of mechanical properties:

Inspected device positioning;
camera/display measuring distance
modification.

» Adjustment of optical properties and
lightening conditions: Mechanical
diaphragm set-up and objective focusing,
surrounding lightening adjustment.

� Software set-up
» Image properties: Shades of gray/color

imaging; frames per second rate; gain,
white balance and gamma correction
adjustment.

» Camera calibration: Automatic screen
location and projective transformation
identification.

Figure 4 depicts windows interface for Screen
Inspector SetUp module. In order to simplify the
subsequent display inspection the calibration module
includes a screen plane to camera frame homography
transformation identification [4]. Result of this
operation is shown in figure 5 right.

For successful calibration at least 4 points’
correspondences between ideal screen content
template and image of the screen captured on the
camera have to be found.
Consequently the equation (1), which models the
mapping between 2D source point [XS, YS, 1]
(immediate screen point) and 2D destination point
[XD, YD, 1] (point in the camera frame imaging the
screen) in homogenous coordinates, can be solved for
8 unknown parameters h11...h32 of the projection
matrix. Parameter m describes the scale ambiguity of
the transformation. Further information on
coordinates mapping and the use of homogenous
coordinates’ can be found for example in [4] and [5].

































=
















111 3231

232221

131211

S

S

D

D

Y

X

hh

hhh

hhh

Y

X

m (1)

The calibration points can be defined manually, but
the SW environment also enables completely
automated approach. The user has only to choose the
template image for currently displayed GUI screen.
The calibration screen should contain high amount of
spatially unique and uniformly distributed interest
points. A very suitable example is the 2D pattern of
binary noise presented in figure 4, but in most cases a
well structured menu screen (as the one from
figure 5) should also suffice.

Fig. 4: System setup and calibration GUI, with an example of

suitable calibration pattern

The locations of the calibration points in both images
and their mutual correspondences are found using
“speed-up robust features” (SURF). However, even
the SURF method can generate many false
correspondences and thus a robust initial estimation
of the transformation parameters utilising RANSAC
algorithm has been used. Afterwards a simplex
method (originally presented in [7]) for function
minimization is applied in order to fine-tune the
resulting homography matrix by minimizing the sum
of absolute differences between the screen template
image and the transformed screen image.
The calibration step brings many advantages. Not
only that it ensures normalization of the captured

screen images, but it can also significantly reduce
inspected area of the camera frames and therefore
decrease computational time. Since the calibration is
required only at the beginning of the test procedure,
its higher computational complexity is not a setback.

Fig. 5: Projection matrix estimation and screen image rectification
(left: detected screen area, right: rectified image)

Display inspection

The developed three-level inspection library (see
figure 2) implements 3 basic image processing
algorithms. These are:

� image similarity check,
� object localization,
� OCR functionality.

More complex tasks can be solved using their
combination. This should ensure future extensibility
and easy adaptation of the inspection system to
different GUI and screen types.
The image similarity check is primarily intended for
the comparison between the ideal screen template and
the currently displayed content captured by camera.
The actual comparison algorithm is based on the so
called cosine criterion (for more information see [6])
represented by the equation (2).

∑∑
∑==

i ii i

i ii
A

ba

ba
C

22ba
ab

 (2)

Compared images are regularly divided into small
areas (e.g. 4x4 pixels). Pixel values from these areas
are transformed to the one-dimensional vectors a
(ideal template area) and b (displayed screen content
area). The resulting criterion value CA is naturally
normalized to the range 1;1− . Because the images

have only nonnegative pixel values, the negative
results do not occur. Geometrical meaning of the
equation (2) is that CA represents the cosine of an
angle between the vectors a and b. This implies that
the criterion is insensitive to linear contrast changes.
An important role during the image comparison has
the mask image presented in bottom part of figure 3.
Each pixel from this mask serves as a flag register for

definition of special meanings of the corresponding
screen point. For example setting the most significant
bit to 1 is interpreted as a point with no effect to the
image comparison computation. This is important if
there are continuously changing areas present in the
screen. Their actual appearance cannot be predicted
and therefore should not be evaluated as a static
image.
Other bits from the mask image may have different
meanings according to the demands of the tested
devices. Their combination creates a greyscale image
representation of the mask.
The second basic image processing functionality of
the inspection system is the ability to localize the
position of separate graphical objects. The algorithm
is based on template matching. This method again
requires an ideal template possibly complemented by
mask image. Localization result of the calculator icon
is shown in the figure 6.

Fig. 6: Graphical object (calculator icon) localisation

The ability to read displayed text and numerical data
is the third image processing functionality included in
our inspection system. A serious shortcoming of
today available OCR algorithms is their high
sensitivity to font styles. Therefore, the obtained
results should be subjected to some kind of post-
processing algorithm if possible. A simple example of
such post processing is a cross-examination with the
expected text content.

Fig. 7: Utilization of optical character recognition

The OCR algorithm currently utilized in the system is
intended for recognition of general texts. It works
well with wide variety of different fonts and has the
ability to use language dictionaries for corrections.
Example of its application shows figure 7.
Despite its flawless operation in the above mentioned
example, it completely fails with numbers and
characters on fixed segment displays, which are still
very common and even appear as a kind of font in
many sophisticated devices. This problem has caused
the need for adding another OCR method specialized
on fixed segment fonts, which is currently under
development.

CONSLUSION AND FUTURE WORK

The introduced visual inspection system is intended
for effortless semi-automated evaluation of graphical
user interfaces. It is based on image processing
algorithms, which in combination with user input
simulator creates a powerful inspection tool capable
of human-like approach to extensive functionality
checks of electronic devices.
Due to the designed hardware and software structure
of the inspection system, the potential for future
expansions and adjustments to new types of tested
devices is substantial.
Utilization of computer vision allows complete
separation of the inspection system from the tested
device and makes it a suitable tool for examination of
various screen technologies.
The inspection procedure programming interface is
implemented for .NET environment (using CLR C++
and C# languages) and can be distributed as a set of
dynamic link libraries. C# and other forms of
compatible high-level .NET languages ensure
intuitive and rapid development of the inspection
programs.
The future development of the core functionality of
the system will be aimed at expansion of modularity
and specification of standard interfaces for visual data
input and output.
Other ways for improvement lie in the development
of OCR algorithms and extension of basic image
processing functionality.

ACKNOWLEDGEMENT

This work has been supported by the Czech Ministry
of Education under the project 1M0567 Centre for
Applied Cybernetics.

REFERENCES

[1] S. E. Black, R. L. K.N. Goodman, Wood, Multi-
Channel Deep-Memory Digitizing Architecture
for Automated Inspection of Large Composite
Surfaces, Autotestcon, 2006 IEEE, vol., no.,
pp.558-564, 18-21 Sept. 2006

[2] J. C. Silva, J. Creissac, J. Saraiva, GUI
Inspection from source code analysis, OpenCert
2010, ISSN: 1863-2122, Available from WWW:
<http://journal.ub.tu-berlin.de/eceasst/>

[3] G. Bradski, A. Kaehler Learning OpenCV,
Sebastopol, O’Reilly Media, Inc. 2008,
ISBN: 978-0-596-51613-0

[4] P. Penna, and R. Patterson, Projective geometry
and its applications to computer graphics, USA,
Prentice-Hall, ISBN 0-13-730649-0

[5] J. Žára, B. Beneš, J. Sochor, P. Felkel, Moderní
počítačová grafika. Praha: Computer Press,
1998. ISBN 80-251-0454-0

[6] J. Jan, Medical Image Processing Reconstruction
and Restoration: Concepts and Methods. Boca
Raton: Francis & Taylor 2006, ISBN 0-8247-
5849-8

[7] J. A. Nelder, R. Mead, A Simplex Method for
Function Minimization, Computer Journal, vol.
7, pp. 308–313

