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ABSTRACT 
Visual surveillance and monitoring have aroused interest in the computer video community for many years. The 
main task of these applications is to identify (and track) moving targets. The traffic monitoring application we 
have developed requires that a large number of parameters is tuned in order to work properly. About thirty 
parameters concerning the detection algorithm have been considered as to be optimized. Accordingly, this paper 
shows how a Genetic Algorithm (GA) represents a powerful task in order to automatically compute sub-optimal 
parameter settings in a motion detection system. Besides, to our knowledge this work is the first attempt of using 
GAs to such a problem. Accurate experiments accomplished on a challenging test sequence show the relevant 
results attained in terms of qualitative performance.  
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1. INTRODUCTION 
Most of the computer vision systems or, generally 
speaking, systems facing pattern recognition 
problems rely on a high number of well-tuned 
parameters in order to work properly. Coping with 
parameter optimization by considering this task as a 
separate task is usually a good practice which yields 
efficient and stable systems. We call this stage 
software system calibration (which has not to be 
confused with camera calibration), here briefly only 
calibration. This calibration step is indeed useful not 
only once all the system parameters are already well 
defined, therefore at the end of the development 
stage, as one may think. It may also bring up a 
helpful contribution during the development stage. 
Namely, besides developing methods capable of 
adapting to changing situations at run time, a good 
understanding of the relationships between 

parameters and their setup using challenging test 
sequences are crucial tasks. For instance, a new 
parameter added to the system may depend on the 
ones already active. Or worse, those may depend on 
it and this will require a full setup of all the already 
existing parameters. In addition, often problems in 
computer vision are ill-posed problems: small 
changes in the last arrived parameter can heavily 
alter final results. 

Many methods are known in order to solve 
optimization problems whether the input space is 
continuous or discrete. Since in our problem input 
parameters are of both types, we turn our attention to 
methods coping with discrete parameters, which 
usually can also address continuous input domains. A 
few global search strategies are based on some 
biological metaphor. Among the most known are 
Tabu Search, Simulated Annealing and Genetic 
Algorithm (GA). Tabu Search uses memory-response 
to guide the search towards optimal/near-optimal 
solutions, by dynamically managing a list of 
forbidden moves. Simulated Annealing ([Bev01a], 
[Bev02b]) mimics the annealing process for 
crystalline solids, where they are cooled very slowly 
from a high temperature, with the hope of relaxing 
towards a  low-energy state.  

GAs are search methods that receive their inspiration 
from natural selection and survival of the fittest 
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individuals in the biological world. GAs differ from 
more traditional optimization techniques in that they  
involve a search from a population of solutions 
(chromosomes), not from a single point.  

In a traffic monitor application some parameters need 
dynamical tuning, at run time. However, a large 
number of parameters requires to be tuned statically, 
before the system starts working. Here, we present a 
GA for optimizing these last type of parameters in a 
motion detection algorithm. The motion detection 
algorithm we have developed is made of a 
background generation module, a blob segmentation 
module and a shadow detection module. There are 
about 30 parameters to tune among the three modules 
so as the motion detection algorithm works properly. 
Tuning this amount of parameters manually may 
require weeks. Instead, once the GA�s parameters 
have been tuned, a very good solution is reached 
within few hours. Having a quick response about the 
behavior of new parameters introduced in the 
detection system proved to be very effective in order 
to evaluate the goodness of a method at once. In 
addition, this allows obtaining good results also 
during a development stage. Besides, tuning by hand 
the parameters internal to the detection algorithm 
could �freeze� the algorithm and make it work only 
under certain conditions. In fact, in case of changing 
scene or filming modality, re-tuning parameters 
could require weeks. At last, it is worth remarking 
that to our knowledge this work is the first attempt of 
using GAs  to calibrate a motion detection algorithm. 

This paper is organized as follows. In Section 2, 
previous applications of GAs to video analysis 
problems are given. In Section 3 the domain problem 
(i.e., the motion detection algorithm) is presented. In  
Section 4 the general scheme of the GA is depicted, 
as well as some significant measures used in order to 
assess the quality of results. Section 5 outlines the 
most important motion detection algorithm 
parameters to optimize. Experimental results are 
shown in Section 6 and Section 7 draws conclusions. 

2. PREVIOUS WORKS 
No much work has been done with sequence 
processing using GAs, mainly because of the large 
amount of processing involved. In addition, to our 
knowledge this is the first attempt to optimize 
parameters in a motion detection application by 
means of a GA. In [Mosch95] the authors cope with 
a problem of motion estimation by assuming a 
parametric motion model. Here, each chromosome is 
formed by only six continuous parameters. In 
[Kim00], [Kim01] and [Kim02] genetic 
programming is used to segment video sequences. 
Here each chromosome represents a pixel and 
consists of a label and a feature vector. The fitness is 

defined as the difference between the estimated and 
the actual color vector at the location of the 
chromosome on the image. The chromosomes are 
classified as being stable or unstable, whether they 
belong to background or moving object parts, 
respectively. Two measures are used to evaluate the 
quality of the segmentation results: the boundary 
error and the misclassification rate. The proposed 
method requires half a second to a distributed GA to 
segment  each frame in sequences showing very 
simple movements. At last, in [Hwan01] a GA uses 
both spatial and temporal information to segment and 
track moving objects in video sequences. Each 
chromosome is allocated to a pixel and consists of a 
label and a feature vector. The chromosomes are 
started from the segmentation results of the previous 
frame and only chromosomes corresponding to the 
moving objects parts are evolved. After creating 
video object planes for each frame, they are then 
tracked by tracking on the spatial segmentation level. 

3. THE DOMAIN PROBLEM 

The Motion Detection System 
This section outlines the overall motion detection 
system we arranged ([Bev01b], [Bev02a]). The 
scheme of the algorithm is described in Fig.1. 

The system includes a background generation 

[Bev02c] and updating algorithm and a shadow 
detection module. Thick boxes with rounded corners 
are the basic modules which the algorithm is made 
of. Thin boxes represent the input (output) images to 
(from) the modules. Circles represent the 
fundamental image operations that have been 
accomplished.  

The input of the system is constituted by a 100 frame 
gray level sequence representing a daytime traffic 
scene, with 384x288 frame size and working at 10 

Figure 1. General scheme for the motion 
detection algorithm  



Hz. The algorithm processes one frame at a time and 
it gives the segmented interesting blobs (i.e., a sort of 
coherent connected regions, sharing common 
features) as the final output. Blobs are made of 
vehicles, humans, shadows or all of them. Within the 
present work, �blobs� are made of �objects� and 
these different concepts must not mislead.  

After that a background has been generated during a 
bootstrap phase and the arithmetic subtraction 
between the reference background and the current 
frame has been performed, one suitable threshold TF 
must be chosen and applied in order to determine 
which pixels are on the move. The image which has 
emerged from this threshold operation represents the 
starting point for all of the subsequent operations: a 
wrong choice for the threshold could afflict final 
results. In fact, if the threshold is kept too low, a lot 
of true positive signals maybe are not detected. On 
the opposite, an excessively high value includes most 
of the moving pixels together with a lot of noise.  

3.1.1 Blob segmentation 
The difference image constitutes the input to the 
following morphological step. In this system we use 
both region-based and edge-based segmentation 
techniques. In particular, the first approach is used to 
find complete blobs, that is, blobs made of objects 
and probable shadows. The second approach serves 
to define just shadows, as we will see afterwards. 

The morphological operation we realize ([Bev02d]) 
aims to give a measure of how much a pixel belongs 
to a structural windowed region around it, thus 
resulting in a very effective false positive reduction 
step. The operation we perform acts in a slightly 
different way with respect to the ones employing a 
�classic� morphological operator. In fact, we 
introduce the fitness of the pixel at the center of the 
structuring element in respect of the pattern it should 
belong to. The first step is to define the basic 
structure we intend to address. Fig.2(a) shows the 
basic structure and the compound structure (b) we 
use. The latter is obtained by rotating the former by 
90°, 180° and 270°. This is as to say that the basic 
structure is searched by considering every spatial 
arrangement. In addition to these two structures, we 
define a cell-based structure (Fig.2(c)). It is built 
through stemming from the compound structure (b), 
the same as (b) has been built starting from (a). But 

(b) is symmetric; thus (c) is formed basically by the 
set of all possible occurrences of the compound 
structure. Namely, in the example of  Fig.2 the cell-
based element (c) is composed by 9 compound (cell) 
elements (b), whose centers are the white circles plus 
the black circle. 

How does this method exactly work? In our 
implementation, all the pixels of the elements 
involved in (a), (b) or (c) are assigned �1�. In case of 
the basic structure (Fig.2(a)), a logical AND between 
the pixel pointed by the circle and each one of its 
three neighborhoods is performed. The arithmetic 
sum of these three partial results represents the 
fitness of the pixel pointed by the circle. Further, a 
hard threshold on this fitness value allows the pixel 
to be assigned �1� or �0�; this occurs whether the 
fitness is greater or less than the threshold, 
respectively. In case of the compound structure 
(Fig.2(b)), this procedure is accomplished for four 
times. Unlike what we have made before, the partial 
fitnesses computed for the pixels pointed by the 
white circles are summed to each other instead of 
being assigned to the pixel. The outcome of the 
threshold operation performed on the total amount of 
fitness is finally given to the pixel corresponding to 
the center of the structure (the black circle). At last, 
for the cell-based structure (Fig.2(c)), first we 
compute the fitness for each cell and then the overall 
fitness is assigned again to the central pixel pointed 
by the black circle.  

3.1.2 Shadow segmentation 
The main problem encountered in designing a system 
for outdoor motion detection is the reliability of 
detecting targets despite changes in illumination 
conditions and shadowing. Therefore, one of the 
achievements of the system is to successfully 
recognize and remove moving shadows attached to 
objects. 

We distinguish two types of shadows, based on their 
photometric properties. The first category is 
constituted by the so-called umbra, where the darker 
inner side of the shadow is predominant. The second 
category consists of penumbra, which is the zone 
characterized by a soft luminance transition from 
shadowed to non-shadowed background. This is the 
outer side of a shadow.  

The shadow detection module we setup starts from 
the division between the background and the current 
frame, within the regions detected by the blob 
segmentation stage, and deals with shadows where 
penumbra is almost negligible. Actually, both the 
background and the current frame are smoothed, as 
well as the division image, by using a mean filter. 
The convolution kernel size is a parameter to 

Figure 2. Structuring elements: basic (a), 
compound (b) and cell-based (c)  



optimize. The shadow segmentation algorithm relies 
on gradient analysis. In fact, three gradient operators 
(i.e., horizontal, vertical, oblique) are applied in 
order to find roughly homogeneous regions, through 
a thresholding operation. In addition, the division 
image itself is thresholded in order to primarily 
identify likely shadow regions. All these thresholds 
are parameters to optimize. A further structural 
analysis step must be performed in order to define 
connected regions. Finally, a binary edge matching 
operation allows to discard either the regions too far 
from the blob�s boundary or the smallest ones. This 
is accomplished by thresholding the percentage of 
the blob�s border shared with the boundary of the 
homogeneous regions just selected. 

At the end, the detected image regions changed by 
moving shadows will be deleted from the detected 
blob before further processing. 

4. THE GENETIC ALGORITHM 
GAs are part of evolutionary computing (which is an 
area of the artificial intelligence) and emulate the  
evolutionary behavior of biological systems to create 
subsequent generations  that guide the search 
towards optimal/near-optimal solutions. In a broader 
usage of the term, a GA is an any population-based 
model that uses selection and recombination 
operators to generate new sample points in a search 
space. Each sample point is a chromosome 
(individual) made of genes (parameters of the 
problem to solve) and a set of individuals constitutes 
a population. Each iteration of a GA involves a 
competitive selection that eliminates poor solutions. 
The solutions with high fitness are recombined with 
other solutions by swapping the parts of a solution 
with another. Solutions are also mutated by making a 
small change to a single parameter of the problem. 
Recombination and mutation are used to generate 
new solutions that are biased towards regions of the 
space for which good solutions have  already been 
looked at. 

The Algorithm 
Fig.3 shows the flowchart of a typical GA, in 
pseudo-code. This technique involves generating a 
random initial population with a given number of 
chromosomes (made of a set of genes). The initial 
population of individuals is created either randomly 

or by perturbing an input individual. The 
initialization is not critical as long as the initial 
population spans a wide range of variable settings 
(i.e., has a diverse population). Thus, if one has 
explicit knowledge of the system being optimized 
such information can be included in the initial 
population. That is, for example, a parameter value 
(or range) come out by an earlier perfunctory hand 
tuning phase.  

In the second step, each individual�s fitness is 
evaluated. The goal of the fitness function is to 
numerically encode the performance of the 
chromosome. For real-world applications of 
optimization methods, like GAs, the choice of the 
fitness function is the most critical step.   

The third step is the natural selection step. This step 
is implicitly coupled to the replacement step. As a  
matter of fact, once a new individual comes to a new 
population, another individual must leave. The 
process of going from the current population  to the 
next population constitutes a generation of a GA.    

The fourth step consists of the recombination and 
mutation operators. Although in nature these tasks 
are performed in one step, in GAs they are usually 
separate in order to be handled in a better way. Two 
chromosomes (parents) from the current population 
are randomly selected to be mated. The 
chromosomes which are not allowed to mate are 
placed into the next generation unchanged.  

At this point, steps two, three and four are then 
repeated for each generation until a termination 
criterion is met. 

Now let us see the most common recombination and  
mutation operators used for reproducing. In the one-
point crossover, one crossover point is selected along 
the chromosome and the genes up to that point are 
swapped between the two parents. Besides the one-
point crossover, more than one crossover point can 
be selected and the fragments alone between those 
positions can be exchanged (n-point crossover). 
When the number of crossover points is equal to the 
number of genes, we have the so-called uniform 
crossover. A different approach is constituted by the 
arithmetic crossover which considers the children as 
a linear combination of the two parents.  

Analogously, we may have different mutation 
operators. The standard mutation operator simply 
randomly changes the value of a gene. Besides the 
standard approach, the step mutation changes the 
gene value by a predefined (step) amount. The main 
goal of mutation is to maintain the diversity of 
population.  

1. Create first random population 
2. Fitness evaluation 
3. while <Termination condition is false> do 
4. Selection (and Replacement) 
5. Recombination 
6. Mutation 
7. Fitness evaluation 
8. endwhile 

Figure 3. A basic GA in pseudo-code 



GA�s Parameters 
An evolutionary strategy needs to be adopted in 
order to generate individuals for the next generation. 
One of the most common methods and the one used 
in our algorithm is constituted by an elitist 
generation selection operator. Namely, the 
individuals are ranked by their fitness and only the 
best (here, 20% of the population) are selected and 
taken unchanged into the next generation. 
Accordingly, at the same time an equal number of 
individuals chosen on the basis of their inverse 
fitness value are replaced. In this way, we guarantee 
that good individuals are not lost during a run. 

In order to end the evolution of the population we 
must choose a termination criterion. We implement 
two criteria which are the average of the fitness of 
the entire population and of the best individuals. 
Usually, the evolution is stopped when the average 
has reached a plateau. The final result of the GA 
optimization is the best individual of the last 
generation. 

The Fitness Function 
Essentially, the fitness is a function that gives a 
�score� to the outcome of the system and its design is 
probably the most critical task concerning both the 
domain problem and the GA itself. In fact, it must be 
based on the system�s features xi we want to measure 
and most of the parameters within this domain 
algorithm affect the outcome in a seesawly way. For 
example, increasing a parameter value could improve 
blobs� resolution but at the same time damage their 
integrity. 

Let H (Hit) indicate the number of detected objects 
that really move, M (Miss) the number of moving 
targets that will be classified as non-moving and FA 
(False Alarm) the number of stationary objects that 
will be erroneously classified as moving. At last, let 
K=H+M be the total number of the actual known 
objects. Based on the above definitions, we can 
define DR=H/K (Detection Rate), MR=M/K (Miss 
Rate) and FAO=FA/K (False Alarm per Object). 

We must assign different scores to the results based 
on the �correct� trade-off between detection rate DR 
and FA and this relies on researchers� practice. The 
fitness f(x) we conceived is a linear combination of L 
local fitnesses fi(xi) properly weighted (Eq.1): 
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Therefore, each local fitness fi(xi) is univocally 
determined by iσ . In Fig.4 the model for the local 
fitness functions is shown. The domain is ideally 
divided into three distinct intervals, so as to reflect 
more accurately the behavior of each feature we want 
to measure. The interval at the right (the tail of the 
function) points out a region where changing in 
feature values yields a leak contribution to the 
outcome. The middle region usually retains most of 
the samples of the feature�s distribution. Here, 
changing the feature value alters the outcome 
significantly. Giving a measure of what 
�significantly� expresses in this case, means finding 
the right value for σi. At last, feature values in the 
left interval are supposed to fall within the 
neighborhood of the optimum value. Here, little 
changes correspond to little, but significant, 
increments towards the optimum value. A brief 
description of the four fitnesses we used follows. 

• f1(x1): x1 represents MR as a measure of the 
frequency of missing blobs, in terms of their 
number.  Here, σ1=0.2. 

• f2(x2): x2=max(area(M))/N is a kind of MR in 
terms of area of blobs. Instead of considering 
all the missed blobs, we just take into account 
their maximum area. Actually, this value is 
normalized with respect to N, the total number 
of pixels of the image. Here, σ2=0.1. The lower 
value for σ2 if compared with σ1 means that the 
maximum area of the missed blobs is 
conceptually more important than their number. 

• f3(x3): x3 represents FAO in terms of  number of 
blobs. Here σ3=0.4. 

• f4(x4): x4 represents FAO in terms of area of 
blobs. Here σ4=0.2. 

Figure 4. The model for the local fitness 
functions



As a final consideration, we could note that even 
though x3 and x4 can hold values greater than one, 
usually their values are less than one.  

5. PARAMETERS TO BE OPTIMIZED 
In this Section we summarize the key parameters that 
the GA should optimize and their features. The 
configuration of a GA needs investigating several 
points. First, a representation for the individual of the 
population must be chosen. As previously said, an 
individual is constituted by the parameters of the 
domain problem, here the motion detection 
algorithm. One of the most important elements 
affecting choices regarding a GA are the numbers 
and the type of the genes. Actually, in these 
experiments we use 29 parameters which are both 
integer and floating point types. Besides its own 
value, more properties for each parameter are stored: 
its plausible minimum (min) and maximum (max) 
value and the incrementing step.  

 type min max step 
TF int 8 18 1 

k_morph_x int 3 9 2 
k_morph_y int 3 9 2 
morph_ts int 40 150 1 

k_mean_sh_x int 1 5 2 
k_mean_sh_y int 1 5 2 

TM int 70 95 1 

Td int 1 6 1 
Table 1. Some parameters used in the 

optimization process. 
Table 1 summarizes the most significant parameters 
and their properties. Parameters are listed as they are 
presented and used within the algorithm. They are 
grouped on the basis of the operation they perform. 
The full description follows. 

• TF: the threshold value used in the background 
subtraction operation; 

• k_morph_x, k_morph_y: the size of the 
structural kernel (Fig.2(c)) used in the structural 
analysis operation to find the whole blobs 
(Section 3.1.1). Similar parameters are used in 
the structural analysis operation of the umbra 
segmentation module (Section 3.1.2); 

• morph_ts: the threshold for the fitness in the 
same operation as above; 

• k_mean_sh_x, k_mean_sh_y: the kernel size of 
the mean filter  used for the smoothing 
operation described in Section 3.1.2; 

• TM: the threshold value used in the smoothed 
division (Section 3.1.2); 

• Td: the gradient threshold value described in 
Section 3.1.2; there should be three of them, 
actually, they share the same value. 

6. EXPERIMENTAL RESULTS 
The GA, as well as the motion detection algorithm, 
has been written in C and works under Windows, 
Solaris and Linux OS�s. 

In order to perform our experiments, we split our set 
of 100 frames into two sets, each containing 50 quite 
uncorrelated frames. One set has been used in order 
to train the GA so that it could tune its parameters at 
best. After that, we use that set of parameters in 
order to perform our motion detection algorithm on 
the second set of frames so as to test the best 
individual previously obtained. 

The analysis of results is accomplished on the basis 
of the outcome of the GA. Two different results are 
analyzed. The first concerns GA�s parameters, 
namely we establish how good the solution achieved 
by the GA is. The second is the performance, in 
terms of quality, of the pure motion detection 
algorithm. 

A quantitative comparison between estimated and 
true foreground is crucial both to evaluation and 
comparison systems.  For this reason, we extract the 
�ground truth� foreground pixels by hand.  

GA�s Parameters 
Some genetic operators have been tested in order to 
exploit at best the capability of the GA. Good 
choices for mutation and crossover lead the GA to 
better escape local minima. We implement the 
different methods for crossover and mutation 
described in Section 4 and we adaptively swap them 
during the GA life cycle, according to the behavior 
of the fitness values.  

We also try different sizes for population in order to 
deeply explore our search space. Our experiments 
showed us that a population made of 40 individuals 
represents a good trade-off between performance and 
quality of solution.  

In regard to the selection methods, we use the 
�elitist� operator. When using this operator, usually a 
percentage of the population is taken unchanged 
between two further generations. We see that 20%, 
hence 8 individuals, is an appropriate value. 

At last, we tested different termination criteria. We 
focus our attention on two criteria which consider the 
state of the evolution: the average of the fitness of 
the best individuals and the average of the fitness of 
the entire population. Their variation and the change 
of fitness of the best individual during the evolution 



is shown in Fig.5. We can see that the trend of the 
best individual is clearly much more correlated with 
the value of the best 8 individuals than with the 
average of the whole population. Hence, it is 
probable that small fluctuations on the best 
individuals� fitness would mean the achievement of 
the best result (in Fig.5 this happens after nearly 100 
generations). Thus, we stop the evolution of the GA 
when the fluctuation in the average of the fitness of 
the best 8 individuals remains within a small fixed 
threshold.  

 f(x) f1,2 f3,4 

iα   0.600 0.400 

best 0.939 0.967      0.898 

hand-tuned 0.929 0.959 0.885 

Table 2. From top to bottom: the weights iα of the 
local fitnesses; a comparison between best 

individuals and hand-tuned�s global and local 
fitnesses 

Table 2 shows the best values we obtain for the 
fitness by starting with a random population. Here 
f1,2=0.3f1+0.7f2 and f3,4=0.2f3+0.8f4. We usually group 
these two couples of fitnesses since both the fitnesses 
of one couple concur to the same goal. During an 
earlier stage, the selection of the motion detection 
algorithm�s parameters was performed manually; we 
refer to this procedure as the �hand-tuned� one. The 
best fitness value is the average of the best 8 
individuals of the last generation and can be 
compared with the hand-tuned values. We see that 
each fitness value coming from GA executions is 
better than the corresponding hand-tuned value. 
Hence, the global fitness f(x) improves. Even though 
the improvement over the hand-tuned values could 
seem slight, we want to stress that while hand-tuned 
results have been obtained through trials long several 
months, GA allows to achieve good results also 
during a development stage.  

The Motion Detection Algortihm 
Fig.6 shows a significant output frame. For instance, 
here there are globally 11 blobs: 9 H, 0 M and 1 FA 
(blob ID 11, the hedge). To the following analysis 
we only consider the result attained on the test set, 
since it does not differ significantly from the training 
one. In addition, the values are reported in terms of 
number of entities (not of pixels), whether they are 
blobs with shadow (blobs) or just shadows. f-shad 
(�foreground� shadows) indicate all the moving 
shadows detected below the nearest (from bottom) 
pedestrian crossing of Fig.6. Oppositely, all the 
shadows above are �background� shadows (b-shad).  

 H DR MR FAO 
blobs 468 91.2% 8.8% 9.6% 

f-shad 43 97.7% 2.3% X 

b-shad 18 56.3% 43.7% X 
Table 3. Values for the most significant quality 

parameters related to the number of blobs, f-shad 
and b-shad. 

Table 3 shows results attained in terms of DR, MR 
and FAO. The sensitivity of the system reaches 
91.2% with a low value for FAO with regard to the 
number of blobs. We see also that all of the f-shad, 
but one, are detected (and this removed!) while a 
large percentage of the thinner b-shad is not 
detected. Basically, the shadow detection algorithm 
has been devised quite for f-shad, where the 
penumbra region is negligible with respect to the 
umbra. In addition, this kind of shadows is easier to 
detect because they are larger and well defined. As 
for the detection of b-shad, at first sight results 
attained by the system could be considered quite 
poor. However, they should be yet more appreciated 
when considering the objective difficulty for those 
shadows to be detected. In fact, mostly they refer to 
far away vehicles whose overall shapes is not yet 
fully visible. On the other side, this bad visibility 
makes sure this loss in shape definition does not 
cause too heavy a visible consequence.  

Figure 6. An output frame where the moving 
objects (freed of shadows) have been contoured 

Figure 5. Values of the fitness of the best 
individual, average of the best 8 individuals 

and average of the population during the 



To conclude, we depict in Fig.7 the most significant 
part of two extended Receiver Operating 
Characteristic (ROC) ([Shir95]) curves, plotted by 
varying the threshold TF. One related to the hand-
tuned (dashed line) method and one for the optimized 
scheme attained through the GA (solid line). We can 
see that the sensitivity of the optimized scheme is 
always a little greater than in the hand-tuned case. 
Even if at first sight this could seem only a slight 
improvement, nevertheless, it is extremely important 
because such increment is related to a high-quality 
region, within which it is very difficult to obtain 
further improvements. In addition, while the hand-
tuned methods required weeks in order to achieve 
that result, once the GA�s parameters have been 
tuned, starting from a random population an optimal 
configuration is reached within one day on a Pentium 
III 866 MHz equipped with 1.5 GB RAM. 

7. CONCLUSIONS  
In this work we have presented an automated method 
for parameter optimization in a motion detection 
system by means of a GA. To our knowledge, this is 
the first attempt of using GAs to automatically find 
out the �best� parameter setting in  a motion 
detection algorithm. To manually tune about twenty 
parameters a few weeks are required. Instead, once 
the GA�s parameters have been tuned, a good 
solution involving thirty parameters has been reached 
within few hours. In addition, having a quick 
response about the behavior of new parameters 
introduced in the motion detection algorithm 
shortens the time needed to evaluate the effectiveness 
of a method. At last, tuning by hand the parameters 
internal to the detection algorithm could �freeze� the 
algorithm and make it work only under certain 
conditions. In fact, in case of changing scene or 
filming modality, re-tuning parameters could require 
weeks. 
As for future works, since here the fitness evaluation 
is solved independently for each individual, this 
feature could be exploited in a parallel development 

of the algorithm. At last, more local fitnesses could 
be introduced in order to evaluate more motion 
detection algorithm performance measures.  
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Figure 7. Extended ROC curves of the motion 
detection algorithm on the test set. They have 

been plotted by varying the  threshold TF 


