
Comparison of Accelerating Techniques for Discontinuity Meshing

Karel Nechvı́le Petr Tobola Jiřı́ Sochor
Faculty of Informatics Faculty of Informatics Faculty of Informatics
Masaryk University Masaryk University Masaryk University

Botanická 68a Botanická 68a Botanická 68a
602 00 Brno 602 00 Brno 602 00 Brno

Czech Republic Czech Republic Czech Republic

kodl@fi.muni.cz ptx@fi.muni.cz sochor@fi.muni.cz

ABSTRACT

Creating an appropriate mesh is one of demanding tasks of many global illumination algorithms. Discontinuity
meshing proved to diminish artifacts caused by other meshing strategies. Since naive discontinuity meshing would
produce a great amount of geometric computations, accelerating techniques are usually involved. In this paper,
we present results obtained with help ofk-discrete orientation polytopes (k-DOPs) and oriented bounding boxes
(OBBs) and compare them to previously used accelerating schemes like voxels, BSP-trees and octrees.

Keywords: discontinuity meshing, accelerating strategies, discontinuity surface propagation, bounding volume
hierarchies

1 INTRODUCTION

In this article, we concentrate on radiosity methods
that divide the environment into a set of patches and
compute a radiosity on each patch. The radiosity func-
tion on a fully visible surface is a smooth function
but intervening objects cause changes in its course
[Hec92, LTG92]. In order to trap these changes, clas-
sical radiosity algorithms refine the mesh in places
where radiosity function is changing sharply. How-
ever, such a posteriori meshing may not be effective.

Fortunately, it is possible to determine the location
of discontinuity boundaries a priori. Discontinuities in
radiosity function correspond to changes in visibility
between the light source and the patch and they are of
geometric nature. We will call an algorithm that com-
putes shadow boundaries prior to radiosity computa-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT PAPERS proceedings
WSCG 2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

tion asdiscontinuity meshing. Discontinuity meshing
generally consist of three main actions.

• The selection of discontinuity surfaces.

• The propagation of those surfaces through the en-
vironment.

• The construction of meshes containing the dis-
continuity curves.

We would like to note that this article touches
mainly the second item. Any issues concerning im-
portance of individual discontinuities or combinations
of meshes from several light sources are not handled
here. On the other hand, we do not exclude disconti-
nuities caused be so called EEE events. Our main in-
tention was to analyse a speedup of computation using
recent accelerating techniques likek-DOPs and OBBs
for single light source in mind. The rest of the article
is organised in the following way.

Firstly, we introduce basic definitions related to dis-
continuity meshing. Then previously used accelerat-
ing techniques are discussed. Next we outline thek-
DOPs and an OBBs and show how we applied them
to speed up the computations. After that, we present
some technical details from implementation. Finally,
we present comparison to other methods. To sum up,
we discuss directions for further development.



Figure 1: EV and EEE discontinuity surface

2 VISUAL EVENTS

As stated above, changes in radiosity function corre-
spond to changes in visibility. Visibility changes, or
visual events, are related to the interaction of edges
and vertices in the scene [GM90, GCS91]. In this con-
text, vertices and edges are sometimes calledfeatures.
According to individual features involved, events can
be split into:

• EV events, caused by interaction of a vertex and
an edge, and

• EEE events, caused by the interaction of three
edges

Points in space where a ray connecting the features ex-
ist (without intersecting the interior of any other poly-
hedron in the scene) form adiscontinuity surface. The
intersection of a discontinuity surface with a scene
face is calleddiscontinuity curve, see 1. Discontinuity
surfaces given by EV events form planar wedges and
their intersection with a face is a line segment. EEE
events give to rise a ruled quadric surface and corre-
sponding discontinuity curve is a quadric curve.

From pragmatic reasons, we further refine the pos-
sible events into five categories. We will use this nota-
tion later when we will discuss accelerating techniques
in detail. The suffixn is introduced for some events
in order to emphasize that the features involved come
from non-emitter faces.

• VE events- events involving light source vertex
and a scene edge.

• EV events- events given by light source edge and
a scene vertex.

• EEE events- events involving one light source
edge and two environment edges.

• EVn events- events compromised of two scene
features whose corresponding discontinuity sur-
face intersects the light source.

• EEEn events - events involving three scene
edges where the discontinuity surface intersects
the light source.

From purely combinatorial point of view, the dis-
continuity meshing would be almost unusable ap-
proach. For a scene withn polygons, there areO(n2)
possible EV events andO(n3) possible EEE events.
Each discontinuity surface can interact with up to
n polygons, yielding a possibleO(n4) discontinuity
curves, resulting in up toO(n8) mesh elements. As
stated elsewhere [LTG92, Hed98], these upper bounds
are too pessimistic in practice and our results also con-
firm that truth.

3 PREVIOUS RESEARCH ON AC-
CELERATING TECHNIQUES

A simple pseudocode for performing discontinuity
meshing is outlined in figure 2, where combination of
features can be comprised of either two or three items.

The most critical operation is thesurface propaga-
tion through the scene. It includes calculation of in-
tersections between the discontinuity surface and all
faces in the scene. Various acceleration schemes are
usually applied in order to speedup this task.

For EVn and EEEn events, there is another possibil-
ity how to speed up the computation. We should min-
imize the number of events tested that do not intersect



foreachcombination of features{
define a discontinuity surface formed by these features
if (discontinuity surface misses the light source)continuewith following combinationa

propagate the discontinuity surface into the environment
solve the visibility within the discontinuity surface
insert resulting discontinuity curves into elements

}
athis checking is not needed if one of the features is the part of the light source

Figure 2: Simple discontinuity meshing algorithm

the light source. In our implementation, we applied the
approach presented by Drettakis. In [DF94], a bound-
ing volume is created between the light source and a
feature. Other features are then selected from within
the bounding volume only. The bounding volume is
usually described by a set of hyperplanes. We will call
that kind of selection as theconstrained feature selec-
tion.

At the beginning, we would like to note that some
computer resources can be saved by making a care-
ful choice of discontinuity surfaces selected for further
processing. We can trace only those discontinuity sur-
faces whose features are in silhouette with respect to
the light source. Tracing non-silhouette features would
lead to discontinuity surfaces that point into an adja-
cent body. Thus, such events are immediately rejected
because they do not influence visibility of other faces.

3.1 BSP-trees

Lischinski et al.[LTG92], and others [GH94, CS95]
used BSP-tree to accelerate wedge tracing. A BSP-
tree is built in a preprocessing step and a front-to-
back traversal is performed to determine the order-
ing of polygons. Thus, the visibility is determined
by a suitable tree traversal. Such approach has other
nice property—the wedge tracing can be terminated as
soon as the whole discontinuity surface is processed,
see figure 3.

On the other hand, BSP-tree enforces polygon split-
ting1 and the grow of the number of polygons can
be impractical for large scenes. Building a minimal
and/or well-balanced BSP-tree is not a simple task ei-
ther. Furthermore, there is no obvious assistance for
constrained feature selection and EEE-events tracing.

3.2 Voxels

Drettakis and Fiume [DF94] used a voxel grid to limit
the number of processed polygons. When an EV-
event is cast, the wedge is scan converted into the

1Splitting can be avoided but special care must be taken during
a traversal.

Figure 3: An example of scene where BSP-tree helps
to finish wedge tracing early.

grid and only the polygons comprised in processed
voxels are tested for intersection. When tracing an
EEE-event, the intersection of quadric surface with the
scene bounding box is found. The resulting quadratic
curves are used to form bounding boxes on the scene
boundaries that are then used to form a bounding box
of the quadric surface. Within this box, only the ob-
jects contained in voxels cut by the quadric surface are
examined.

When generating non-emitter events, from all com-
binations of features only those intersecting the light
source are of interest. For EVn events, at each vertex
v in the scene a pyramid is formed withv as its apex
and the light source polygon as its base. The pyra-
mid is also extended to the other side of the vertex.
Faces that intersect the pyramid are added to the can-
didate list. The list is then traversed and every edge
is tested to find out if the EV wedge formed of these
features cuts the light source or not. If an intersection
occurs, the extent of the event is possible adjusted and
the discontinuity surface is cast into the environment.
Processing of EEEn events is performed a similar way
to EVn events processing, only the pyramid is not ex-
tended behind the generating edge, see the figure 4.



Figure 4: Bounded volume defined by an edgee and
the light source

3.3 Octrees and Bounding Box Hierar-
chies

Octrees and bounding box hierarchies were utilized
for surface propagation by Hedley [Hed98]. They
have similar properties like voxels. However, they
are adaptable to various local densities within a scene.
Hedley presented comparison of acceleration tech-
niques for planar surfaces that do not require the fea-
tures selection step. For that case, octrees and bound-
ing box hierarchies give similar performance.

4 NEW EXAMINED ACCELERA-
TION STRATEGIES

In general, during the surface propagation we look for
intersections of a 2D object with the scene. It resem-
bles other computer graphics areas, such as ray tracing
or collision detection where we look for intersections
between scene and 1D or 3D object respectively. Dur-
ing a constrained feature selection, we look for inter-
sections between a 3D volume and the scene.

In the past years, new acceleration strategies
emerged in the field of collision detection—namely
oriented bounding boxes and discrete orientation poly-
topes. Thus, we decided to prove their applicability for
discontinuity meshing too.

4.1 Oriented Bounding Boxes

Oriented bounding boxes can be arbitrary oriented in
3D space. They are usually described by a centre point
C, three orthonormal axesAi and three extentsei, for
i = 1..3. Oriented bounding boxes were presented by

Gottschalket al. [GLM96] and an extended discus-
sion concerning these bounding volumes can be found
e.g. in [Got98].

In collision detection systems, the coordinate sys-
tem to which axesAi are related is usually the par-
ents node coordinate system. The reason is that the
scene can be dynamic and some parts of the hierarchy
are allowed to move. On the contrary, in discontinuity
meshing systems the scene is static. Thus, the axesAi

can be specified in a global coordinate system.

4.2 Discrete Orientation Polytopes (k-
DOPs)

k-DOPs are convex polytopes whose facets are de-
termined by halfspaces whose outward normals come
from a smallfixed set of k orientations [KHM+98,
Zac98].

In order to keep the cost as low as possible,k orien-
tations are usually selected from pairs of collinear, but
oppositely oriented, vectors. Kay and Kajiya referred
to such pair as bounding slabs [KK86]. Choosing such
orientations has the advantage that the test for intersec-
tion between twok-DOPs is trivial: it consists ofk/2
interval overlap tests.

k-DOPs are composed into a bounding volume hier-
archy. Klosowskiet al. presented a variety of options
that can adjust the hierarchy. However, these aspects
are outside of scope of this work and can be found in
the original paper [KHM+98].

Axis aligned bounding boxes are a special case of 6-
DOPs, with orientation vectors determined by the pos-
itive and negative coordinate axes. In our framework,
we tested 6-DOPs, 14-DOPs, 18-DOPs and 26-DOPs.
An alternative name for this category of bounding vol-
umes isfixed directions hulls.

5 IMPLEMENTATION DETAILS

To compare the efficiency ofk-DOPs and OBBs to
other techniques, we implemented several previously
mentioned acceleration methods. Our algorithm mim-
ics the approach presented by Drettakis[Dre94]. We
also compute EEE-events, non-emitter EV and non-
emitter EEE events.

5.1 Basic Geometry Tests

In order to keep the implementation and tests unified,
we decided to base the geometry calculations on a sim-
ple test. For EV events, the planar wedges can be de-
scribed by three planes. For constrained features se-
lection, the space is bounded by a set of planes. In
addition, for an EEE event, the quadric surface can be
bounded be a set of planes. Thus, the basic operation
we implemented is the object-plane intersection.



The planes bounding an EEE event we determine
in the following way. Initially, we compute the inter-
section of the quadric surface with the scene boundary
and with the light source. Then we determine bound-
ing boxes of resulting curves and finally connect the
bounding boxes into a shaft [HW94]. Planes forming
the shaft are used to speedup the computations, see
figure 5.

5.2 Voxels

Rasterization is a well-documented topic [Wat93] and
we extended this process to 3D. Various mesh densi-
ties were manually selected for experiments. A scene
was scaled the way that voxel boundaries fall on in-
teger grid, which simplifies the representation and ac-
celerates the computation. Although voxel grids are
fine for wedge rasterization, selecting the voxels ly-
ing inside the constrained volume is a demanding task
compared to other accelerating methods. Furthermore,
determining optimal voxel grid density may be tricky.

5.3 Octree

To build an octree, we used a top-down approach de-
scribed by Hedley[Hed98]. The octree is parameter-
ized by maximal number of polygons allowed in a
node and by a minimal node volume to prevent infi-
nite refinement. Hedley proposed to store single ob-
ject’s ID inside a node of corresponding size, which is
reasonable if we want to use the octree further e.g. for
hierarchical radiosity. However, our experiences have
shown that purely for discontinuity meshing it is fa-
vorable to copy object IDs into all leaves covered by
that object.

When a discontinuity surface is propagated into the
scene, a set of candidate polygons is obtained during
the octree traversal. The set of selected polygons is
then tested for intersection with the discontinuity sur-
face. A pseudocode for getting a list of polygons (for
VE events) is presented in figure 6. The code as-
sumes that the wedge is represented by three planes—
the plane of the wedge and two perpendicular planes
constraining the extent of the wedge’s plane.

The test in pseudocode is conservative, it can suc-
ceed in nodes that actually do not intersect the wedge.
We tested also a non-conservative checking proce-
dure [GH95] and compared its results. In terms of
overall speed, the methods of conservative and non-
conservative checking are comparable, but for its sim-
plicity we prefer the conservative method just pre-
sented.

5.4 BSP-tree

There are many possibilities how to construct a BSP-
tree. In our implementation, we chose the heuristics

GetCandidates (Octreenode, Wedgew, List list)
{

if (not intersection (node, w.plane())
return ;

if (inPositiveSpace (node, w.rightP lane())
return ;

if (inPositiveSpace (node, w.leftP lane())
return ;

AddFacesToList (node.faces(), list);

foreach child from node.children() {
if (not child.empty())

GetCandidateFaces (child, w, list);
}

}

Figure 6: VE event: selecting polygons for further pro-
cessing.

where the polygon with largest area is selected into
the current splitting node. The implementation of this
strategy is simple and generally gives sufficient results.

5.5 Bounding Volume Hierarchy of k-
DOPs

Various strategies how to build an bounding volume
hierarchy (BVH) are described in [KHM+98]. We
adopted the approach presented by authors as a ”splat-
ter” strategy. The BVH-tree is build in a top-bottom
fashion, where at each node a splitting plane perpen-
dicular to axis with greatest variance is chosen.

As presented above, the basic operation in our
framework is an object–plane intersection test. Al-
though straightforward for other basic objects, this test
is not evident fork-DOPs, besides thek = 6 case.

For 14-DOPs, we utilized the approach presented in
[ZK97]. This algorithm computes extremal points in a
given direction. Selecting the plane normal as the di-
rection of interest we can determine thek-DOP–plane
relationship in the same way as for axis aligned boxes.
The algorithm precomputes a small amount of data for
a given direction that are valid for all storedk-DOPs.
These data are used later during the tree traversal to
quickly evaluate the extremal points.

For 18-DOPs and 26-DOPs, we tested another strat-
egy. The wedge was wrapped into a DOP volume and
then collision of two DOPs was checked. This ap-
proach was used also to find out the edges intersecting
a pyramid formed from a feature and the light source.
Instead of representing the pyramid as an intersection
of halfspaces we used the volume occupied by ak-
DOP. We remind that comparing twok-DOPs for in-
tersection amounts tok-interval tests.



Figure 5: Bounding an EEE event into a shaft

Although not apparent at the first glance, depend-
ing on the set of directions selected fork-DOPs the
interval test can give only conservative result. Even if
the volumes do not intersect in reality the answer from
the collision test can be positive. In these cases it is
necessary to repeat the test on the lower levels in the
tree.

6 TESTS AND RESULTS

For all experiments reported here, we used a Linux
PC, (900 MHz, 1GB RAM). The code was compiled
with GNU gcc compiler. All timings were obtained
by adding the system and user times reported by the
C library function ”times”. In order to smooth out mi-
nor variations in the timings, all tests have been run
repeatedly and we report average times.

6.1 Test Scene and Its Preprocessing

For test purposes, we prepared a set of scenes. A sim-
ple interior scene was progressively ”polluted” with
objects and mirrored in order to get more complex
scenes. For the brevity, we present results from one
scene only. The scene consists of 5216 input triangles
and its arrangement can be seen on figure 7.

The memory requirements and preprocessing times
to create various hierarchies are low. The time for cre-
ating accelerating structures is 0.5s for a BSP-tree and
always less then 0.2s for other methods. Thus, the
preprocessing time is negligible compared to overall
discontinuity meshing computation. The memory re-
quirements start at 160kB for larger voxels and end up
with 1.7MB for an OBB tree. For exact values, see the
table 1.

During the preprocessing step, we also tagged ver-
tices and edges of the scene if they lied in a silhouette
position to the light source. As edges and vertices are

Method Memory [kB]
Voxels203 161.4
Voxels303 358.7
Voxels503 1250.5

6-DOP 366.7
14-DOP 692.7
18-DOP 855.7
26-DOP 1181.6
Octree 1261.8

OBB tree 1711.3
BSP tree 771.4

Table 1: Memory requirements - scene with 5216 tri-
angles

shared between multiple faces, we do not have to re-
peatedly evaluate silhouette information later.

6.2 Casting VE and EV Events

The processing of VE and EV events represent the eas-
iest part of all algorithms. The features are easily lo-
cated and the resulting events are planar surfaces. The
geometric configuration of faces in the test scene gives
rise to 10080 VE events, which results in 8115 discon-
tinuity curves. There are 34313 faces intersected by an
VE event.

We get similar statistics for EV events. There were
11814 events cast, which resulted in 5600 discontinu-
ity curves. The number of faces that collided with an
EV event was 46054. These numbers are common for
all algorithms tested.

However, the amount of faces that were examined
for an intersection with an event is different for each
particular acceleration technique. The results from
tests are presented in table 2. The time that was ac-
tually needed to process the events is included in the
table as well.



VE events EV events

Method
Tested
faces

time[s]
Tested
faces

time[s]

Voxels203 877221 1.2 1035076 1.7
Voxels303 609026 1.1 705535 1.6
Voxels503 426277 1.1 475979 2.0

6-DOPs 278848 0.9 260222 1.1
14-DOPs 230961 1.1 246941 1.5
18-DOPs 755163 1.7 531398 1.6
26-DOPs 540035 1.4 391862 1.5
Octree 402227 2.5 412869 2.1

OBB tree 217892 1.1 266703 1.5
BSP tree 3.4 3.6

Table 2: Results for planar events that do not insist on
a features selection phase.

We remind that for 6-DOPs and 14-DOPs we com-
pute intersection with a plane exactly, but in the case
of 18-DOPs and 26-DOPs, we wrap an event into an-
other DOP and a check for intersection between two
DOPs. We do not present the number of tested poly-
gons for a BSP-tree because the scene is subdivided
into smaller polygons and the result is not comparable
to other methods.

The timings from table 2 are very tight and we can
not prefer any particular accelerating technique for
planar surface processing.

6.3 Processing EEE, EVn and EEEn

Events

All events discussed in this section require a features
selection step. During the selection phase, a bound-
ing volume is build and features for further processing
are taken from that volume only. The faces that were
caught in selection step are labelled as pyramid faces
in the table 3. Then, events are cast into the scene
and the number of faces tested for intersection is also
stored in the results table.

In the current testbed, we compute EEE events in a
combinatorial way, which is slower than the approach
presented by Drettakis [DF94]. After finishing the
mesh insertion part of the discontinuity meshing we
can switch to optimized enumeration of EEE events
too.

For non-emitter events, the results indicate that
these events are manageable with current hardware
too. We think it is because architectonic-like scenes
show high horizontal complexity but vertical complex-
ity is usually low. With vertical/horizontal complexity
we mean how many objects can be found in a verti-
cal/horizontal belt of the scene.

For EEE events, there were 28686 events cast which
resulted in 8477 discontinuity curves. The number of
faces that really intersected an event was 55213. For

EVn events, there were 12596 events cast which re-
sulted in 3789 discontinuity curves. There were 11633
faces colliding with an EV event. For EEEn events,
there were 3210 events cast which resulted in 591 dis-
continuity curves. There were 2934 faces colliding
with an EV event.

7 CONCLUSION AND FURTHER
WORK

The BSP-tree and voxels are not particularly suitable
for accelerating a complete discontinuity meshing al-
gorithm. Both of these methods suffer when it comes
to the features selection part of the algorithm. As vox-
els size goes smaller, the number of processed faces
goes down. But on the other hand, the selection and
event tracing phase become more demanding, bring-
ing no advantage at all. A BSP-tree does not help us
when processing non-planar events either.

The 6-DOPs (axis aligned bounding boxes) seem to
be the most powerful acceleration technique. Even
though they are not the tightest bounding volumes,
they win in speed.

Unfortunately, our hope that examinedk-DOPs
and/or OBBs can bring a breakthrough in accelerating
methods for discontinuity meshing was not fulfilled.
For moderately sized scenes we tested, these accel-
erating methods give similar performance as the axis
aligned bounding boxes. We got remarkable speedup
against the axis aligned boxes solely for unconven-
tional artificial scenes.

In the near future, we are going to test the accelerat-
ing techniques on large scenes. When developing the
framework, the next step is to implement discontinuity
curves insertion into the scene elements. As already
noted, that should help us to enumerate EEE events in
a faster way.

For further development, we would also like to
switch the order of computations and to compute all
events that arise in a common space progressively. E.g.
we could cache the objects situated in a given region
and then evaluate all events from that region regard-
less of the type of event. Such ordering could avoid
unnecessary tree traversals and could help us to dis-
card unimportant events in one step if we employ an
importance-based generation of discontinuity curves.

ACKNOWLEDGEMENTS

The authors wish to thank to Petr Konečný for shar-
ing his ideas and code. The work presented here was
supported by Grant Agency of Czech Republic, Con-
tract No. GACR 201/98/K041 and by Czech Ministry
of Education, Contract No. VZ MSM143300003.



EEE events EVn events EEEn events

Method
Pyramid

faces
Tested
faces

Time
[s]

Pyramid
faces

Tested
faces

time
[s]

Pyramid
faces

Tested
faces

time
[s]

Voxels203 998730 3416760 38.9 331925 1042929 3.6 429145 425460 7.0
Voxels303 673076 2427820 37.0 234125 730153 3.8 271929 318769 7.8
Voxels503 487047 1693231 57.8 162983 526333 6.6 195252 218985 14.0

6-DOPs 333098 1265357 17.8 95905 391445 2.0 134873 172134 4.0
14-DOPs 322656 1254506 18.7 93600 346432 2.7 128365 170430 4.3
18-DOPs 637263 1991163 25.0 217185 570730 2.8 318457 264246 5.3
26-DOPs 429888 1335761 18.6 147339 438723 2.3 203308 188680 4.2
Octree 446641 1660396 22.6 440552 1313049 4.1 572431 590502 7.7

OBB tree 334879 1298364 19.8 98918 310617 2.3 130791 165108 4.3

Table 3: Results for events that require a features selection phase
.

REFERENCES

[CS95] Yiorgos Chrysanthou and Mel Slater.
Shadow volume BSP trees for computa-
tion of shadows in dynamic scenes. In Pat
Hanrahan and Jim Winget, editors,1995
Symposium on Interactive 3D Graphics,
pages 45–50. ACM SIGGRAPH, April
1995. ISBN 0-89791-736-7.

[DF94] George Drettakis and Eugene Fiume.
A Fast Shadow Algorithm for Area
Light Sources Using Backprojection. In
Computer Graphics Proceedings, An-
nual Conference Series, 1994 (ACM SIG-
GRAPH ’94 Proceedings), pages 223–
230, 1994.

[Dre94] George Drettakis. Simplifying the Rep-
resentation of Radiance from Multiple
Emitters. InFifth Eurographics Work-
shop on Rendering, pages 259–272,
Darmstadt, Germany, 1994.

[GCS91] Ziv Gigus, J. Canny, and R. Seidel. Ef-
ficiently computing and representing as-
pect graphs of polyhedral objects.IEEE
PAMI, 13(6):542–551, 1991.

[GH94] Neil Gatenby and W. T. Hewitt. Opti-
mizing Discontinuity Meshing Radiosity.
In Fifth Eurographics Workshop on Ren-
dering, pages 249–258, Darmstadt, Ger-
many, June 1994.

[GH95] Daniel Green and Don Hatch. Fast
polygon-cube intersection testing. In
Graphics Gems V, pages 375–379. 1995.

[GLM96] S. Gottschalk, M. C. Lin, and
D. Manocha. OBBTree: A hierar-
chical structure for rapid interference

detection. Computer Graphics, 30(An-
nual Conference Series):171–180, 1996.

[GM90] Ziv Gigus and Jitendra Malik. Comput-
ing the aspect graph for line drawings of
polyhedral objects.IEEE PAMI, Febru-
ary 1990, 12(2):113–122, 1990.

[Got98] S. Gottschalk. Collision Queries us-
ing Oriented Bounding Boxes. PhD the-
sis, University of North Carolina. Depart-
ment of Computer Science, 1998.

[Hec92] P. Heckbert. Discontinuity meshing for
radiosity. Third Eurographics Work-
shop on Rendering, pages 203–226, May
1992.

[Hed98] David Hedley.Discontinuity Meshing for
Complex Environments. PhD thesis, De-
partment of Computer Science, Univer-
sity of Bristol, August 1998.

[HW94] Eric A. Haines and John R. Wallace.
Shaft Culling for Efficient Ray-Traced
Radiosity. In P. Brunet and F. W.
Jansen, editors,Photorealistic Render-
ing in Computer Graphics (Proceedings
of the Second Eurographics Workshop
on Rendering), New York, NY, 1994.
Springer-Verlag.

[KHM +98] James T. Klosowski, Martin Held, Joseph
S. B. Mitchell, Henry Sowizral, and
Karel Zikan. Efficient collision detec-
tion using bounding volume hierarchies
of k-DOPs.IEEE Transactions on Visual-
ization and Computer Graphics, 4(1):21–
36, 1998.

[KK86] Timothy L. Kay and James T. Kajiya.
Ray tracing complex scenes. In David C.



Figure 7: Test scene with 5216 triangles.

Evans and Russell J. Athay, editors,Com-
puter Graphics (SIGGRAPH ’86 Pro-
ceedings), volume 20, pages 269–278,
August 1986.

[LTG92] Dani Lischinski, Filippo Tampieri, and
Donald P. Greenberg. Discontinuity
meshing for accurate radiosity.IEEE
Computer Graphics and Applications,
12(6):25–39, November 1992.

[Wat93] Alan Watt. 3D Computer Graphics.
Addison-Wesley, 1993. ISBN 0-201-
63186-5.

[Zac98] Gabriel Zachmann. Rapid collision de-
tection by dynamically aligned DOP-
trees. InProc. of IEEE Virtual Reality
Annual International Symposium; VRAIS
’98, March 1998.

[ZK97] Karel Zikan and Pert Konecny. Lower
bound of distance in 3d. InWSCG ’97
(The Fifth International Conference in
Central Europe on Computer Graph-
ics and Visualization), pages 640–649,
Plzěn-Bory, Czech Republic, 1997. Uni-
versity of West Bohemia.


