
A Fast Method for Applying Rigid Transformations
to Volume Data

J. Fischer, A. del Rı́o
WSI/GRIS

University of Tübingen
Sand 14,

D-72076 Tübingen, Germany
{fischer, anxo}@gris.uni-tuebingen.de

ABSTRACT

Volume rendering is a widespread method for displaying graphical models in fields such as medical visualization
or engineering. The required image information is stored in a volume dataset, which is a threedimensional array
of voxel intensities. Sometimes it is necessary to transform a given volume dataset by geometric transformations
like rotation, scaling or translation. In this process, a new volume dataset containing the transformed volume
is generated. Straightforward algorithms with an emphasis on minimizing the resampling error are the standard
approach to computing such transformations. In this paper we present a new algorithm, which is significantly faster
than these. Since it is based on a simple interpolation scheme, it is useful for generating fast previews. Depending
on their size and voxel bit depth, it can even provide realtime transformation of volumes.

Keywords
Volume Data, Rigid Transformations, Interpolation, Bresenham algorithm.

1. INTRODUCTION

Unlike many approaches for realtime display of 3D
computer graphics, direct volume rendering is not
based on drawing polygonal models. Instead the
graphical data to be rendered is structured as a threedi-
mensional array of image elements, the so-called vox-
els. Each voxel contains a value describing the mate-
rial properties (e.g. density) at its location in the graph-
ical model. Such volume datasets are usually acquired
and preprocessed before rendering and remain static
afterwards. During the display of the dataset, only the

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSCG SHORT Communication papers proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Re-
public.
Copyright UNION Agency – Science Press.

viewer position and orientation, as well as parameters
for image generation, are altered. Direct volume ren-
dering has been described by Levoy [Lev88]. A more
recent overview is available in [SML98].

In some applications, though, it is necessary to ap-
ply changes to the volume data itself outside of the
rendering process. In many cases this means apply-
ing geometric transformations like rotation, scaling or
translation to the graphical model. Sometimes several
datasets are combined to form a new one using a pro-
cess called constructive volume geometry. A descrip-
tion of constructive volume geometry is given by Leu
and Chen in [LC99].

In this work we investigate several methods for gen-
erating a new volume dataset from an existing one by
application of a geometric transformation. Along with
describing standard approaches for this task, which try
to achieve small resampling errors, we also suggest a
new algorithm designed to shorten computing times
significantly. Since our algorithm is only capable of
processing rigid transformations (i.e. only linear trans-
formations, no scaling), we will limit our considera-
tions to these.

In order to apply a geometric transformation to a
volume dataset, two major steps have to be performed.
At first, the transformed position has to be determined

for every voxel. Then the new voxel intensities are
computed for all grid positions in the resulting vol-
ume. The latter step is done by using an interpolation
scheme to approximate the voxel values.

Different methods for performing and optimizing
the two steps of volume transformation exist. They are
discussed in detail in Section 2. The new algorithm,
which combines both parts in a novel way, is described
in Section 3.

In addition to the software-based methods that
this paper focuses on, some research has also been
done into special hardware for volume transformation.
Examples of this related work include [TQ97] and
[CK00].

2. STANDARD APPROACH

In this section the standard approach to transform-
ing volume data is described. An implementation of
this method can be found in the VTK software library
[SML98]. We assume here that rigid transformation A
is to be applied to a volume data set V . A is given as
a 4-by-4 matrix containing a combination of rotations,
translations and coordinate inversions.

A ∈ R
4x4

V = {vijk},
i=1,...,I

j=1,...,J

k=1,...,K

(1)

As shown in Equation 1, the volume to be trans-
formed, V , has K slices, each comprising J lines of I
voxels. Without loss of generality we assume that the
lower left corner of the volume dataset is located at the
coordinate origin. The slices are to be parallel to the x-
y-plane and to have increasing z-coordinates, starting
at zero. We also require the volume to be isotropic and
have a regular spacing of 1.0 as shown in Equation 2.

Given voxel index (i, j, k) for voxel vijk:

pijk =




xpijk

ypijk

zpijk

wpijk


 =




i − 1
j − 1
k − 1

1




(2)

In Equation 2, pijk denotes the position of voxel
vijk in world coordinates. Also note that we have
already introduced a homogeneous coordinate w vijk

,
which is required for multiplication by a 4-by-4 ma-
trix.

Possibilities for removing the isotropy and spacing
preconditions are discussed in Section 5. The expected
configuration of the volume dataset is depicted in Fig-
ure 1.

x

y

z
(0,0,0) 1

1

1

Figure 1: Assumed isotropic and regular spacing of
slices.

2.1. Transformation of Voxel Positions

In order to transform the volume, it is processed se-
quentially. The slices are dealt with from front to back.
Within each slice, first the voxel lines and then single
voxels are considered in an order of increasing coordi-
nates.

Each voxel position (i, j, k) that is generated in this
process is transformed according to the given transfor-
mation matrix. This can be done by simply performing
a matrix-vector multiplication.

p̄ijk = A · pijk = A ·




i − 1
j − 1
k − 1

1


 (3)

Equation 3 shows the transformation of voxel po-
sition pijk to its transformed position p̄ijk . Comput-
ing the matrix-vector product requires up to 16 mul-
tiplications and 12 additions, depending on the kind
of transformations that are permitted. Even given the
restrictions to rigid transformations and constant ho-
mogeneous coordinates, still at least 9 multiplications
and 9 additions have to be performed. Note that the
matrix-vector product must be calculated for every sin-
gle voxel position in the entire volume. Thus it con-
tributes significantly to the overall computational com-
plexity.

However there is an effective optimization for this
step of the process. It can be observed that the col-
umn vectors of matrix A represent the directions of
the transformed unit vectors. This leads to a faster re-
placement of the matrix-vector product.

A =


 a1 a2 a3 a4


 (4)

In Equation 4, matrix A is defined to consist of the
column vectors a1 to a4. In the following discussion

we will denote the coordinate origin as point p0 and
the coordinate system’s unit vectors as e1 through e3.

p0 =

(
0
0
0
1

)
e1 =

(
1
0
0
0

)
e2 =

(
0
1
0
0

)
e3 =

(
0
0
1
0

)

p̄0 = A · p0 = a4

ēi = A · ei = ai
i∈{1,...,3}

(5)
As shown in Equation 5, both the transformed ori-

gin and the transformed unit vectors correspond to
columns of matrix A. Now every transformed voxel’s
position can be obtained through a linear combination
of ē1, ē2, ē3 and p̄0.

p̄ijk = p̄0 + (i−1) · ē1 + (j−1) · ē2 + (k−1) · ē3 (6)

Equation 6 is essentially a reshaping of the matrix-
vector product described above. It can be evaluated
incrementally while traversing the volume, as shown
in the following code fragment:

curPos := p̄0

for k := 1 to K do
curPos := curPos + ē3

for j := 1 to J do
curPos := curPos + ē2

for i := 1 to I do
curPos := curPos + ē1

computeInterpolation(curPos)
done

done
done

This optimization reduces the computational costs
to 3 additions in the inner loop, as well as the same
amount in each of the outer loops.

2.2. Reversal of Processing Direction

Until now we have assumed in our discussion that
the voxels of the original volume are transformed into
the target volume’s coordinate system. Whereas this
method is suitable for performing the first step of the
process, it is not practical for the subsequent voxel
value interpolation.

By transforming a voxel position according to ma-
trix A, in most cases a non-integer position in the tar-
get volume is obtained. This makes it very difficult to
distribute the original voxel’s intensity value among its
neighbours in the target coordinate system. Moreover
it can not be ensured that every target voxel is assigned
a value, especially when using nearest-neighbour in-
terpolation.

Original volume

Transformed
original volume

Target volume
coordinate system

Figure 2: Relation between transformed, original and
target coordinate systems. (Corners and crossings cor-
respond to voxel positions.)

An illustration of how a transformed original vol-
ume might lie within the target volume’s coordinate
grid is shown in Figure 2. Note that the depicted 2D
grids are only a graphical representation in the plane
of the actual 3D relationships. They do not directly
correspond to any slices in the volume dataset.

In order to make an easy interpolation of voxel in-
tensities possible, the processing direction is inverted.
Instead of the original volume, the target volume is tra-
versed sequentially. Then, for every target voxel, the
backprojection into the original coordinate system is
computed. Within the original volume dataset, stan-
dard interpolation methods can be easily applied.

Target volume {wijk} with voxel positions qijk:

q̄ijk = A−1 · qijk ,
i=1,...,I

j=1,...,J

k=1,...,K

(7)
Equation 7 shows how each voxel position q ijk in

the target volume can be backprojected into the orig-
inal coordinate system. Due to the type of transfor-
mations permitted for matrix A, it is always invert-
ible. The optimization of the matrix-vector product
discussed in Section 2.1 can also be applied to the
backprojection. Here, the columns of A−1 are used
for incrementally calculating the voxel positions in the
original coordinate system.

2.3. Common Interpolation Methods

Given the backprojected position q̄ijk in the original
volume, the new value for voxel wijk has to be com-
puted now. A number of common methods exist for
interpolating voxel intensities. A detailed discussion

of various interpolation techniques can be found in
[Wol90]. In [LCN98] specialized variations for vol-
ume rendering are described.

The simplest and cheapest approach is the nearest-
neighbour interpolation. For all coordinates of the
given threedimensional position, the nearest integer
number is determined. Then the voxel value at this
integer location is assigned to the target voxel.

i′ = �xq̄ijk
+ 0.5�

j′ = �yq̄ijk
+ 0.5�

k′ = �zq̄ijk
+ 0.5�

wijk := vi′j′k′

(8)

In addition to the calculations shown in Equation 8,
in practice a boundary check has to be performed. If
the resulting integer position is outside of the original
volume, a default background intensity has to be re-
turned instead.

Since the resampling errors caused by the nearest-
neighbour algorithm are usually large, often more
sophisticated interpolation schemes are used. A
widespread method is the so-called trilinear interpo-
lation.

v000 v100

v110
v010

v001
v101

v111
v011

qijk

Figure 3: Voxel cell for trilinear interpolation.

x = xq̄ijk
− �xq̄ijk

� y = yq̄ijk
− �yq̄ijk

�
z = zq̄ijk

− �zq̄ijk
�

wijk = v000 · (1 − x) · (1 − y) · (1 − z)+
v100 · x · (1 − y) · (1 − z)+
v010 · (1 − x) · y · (1 − z)+
v001 · (1 − x) · (1 − y) · z+
v101 · x · (1 − y) · z+
v011 · (1 − x) · y · z+
v110 · x · y · (1 − z)+
v111 · x · y · z

(9)
The voxel cell surrounding a backprojected voxel

q̄ijk is shown in Figure 3, with the neighbours denoted
as v000 to v111. The interpolated value for wijk is then

computed as a weighted sum of the neighbours’ inten-
sities. The interpolation result depends on the posi-
tion of the voxel backprojection within its surrounding
voxel cell, denoted (x, y, z) in Equation 9.

Trilinear interpolation requires access to several
voxels, as well as at least 7 multiplications and 14
additions, even in its most optimized form. Thus it
is significantly more expensive than nearest-neighbour
interpolation.

Moreover a number of interpolation schemes ex-
ist which take an even greater number of surround-
ing voxels into account. These methods, like cubic
or quadratic interpolation, achieve even smaller re-
sampling errors while requiring still more computation
time (see [LCN98] and [Wol90]).

3. THE NEW ALGORITHM

In this paper we propose a novel algorithm for per-
forming rigid transformations of a volume dataset.
Unlike the standard approach discussed in Section 2,
our method combines backprojection and interpolation
into a single step.

The basic idea is to traverse a scanline of a slice in
the target volume while simultaneously traversing its
backprojection in the original volume. In order to effi-
cently generate the backprojection of a line in the vol-
ume dataset, we employ the 3D Bresenham line gener-
ation algorithm [KS86].

Original volume

Target volume

Backprojected
target volume

Example scanline

Figure 4: Example of a scanline in the target volume
and its backprojection into the original volume. In this
figure, each square symbolises one voxel’s intensity.
Different filling patterns represent different intensities.

Using this algorithm, integer voxel positions in the
original volume corresponding to voxels in the target
volume are determined. Voxel itensities can then be
directly copied. This is similar to applying a nearest-
neighbour interpolation (see Section 2.3), but elimi-

nates the need for explicit computation of the back-
projection and coordinate flooring operations.

Figure 4 illustrates how a target volume scanline
corresponds to its backprojected equivalent in the orig-
inal coordinate system. In the figure, the combination
of a rotation around the volume center and a coordi-
nate inversion is assumed as the rigid transformation.
This is the same as mirroring the volume at a slightly
inclined symmetry plane. Here again it has to be noted,
that the grids shown in the diagram do not directly rep-
resent any slices of the volume data. Their purpose is
to demonstrate the underlying 3D relationships in 2D.

Target volume

Target scanline
to be computed

1 2 3 4 5 6 7 8

Original volume

Iteratively generated
Bresenham steps

123
456

78

Figure 5: The target scanline and its rasterized back-
projection are processed simultaneously.

The central idea of our algorithm is depicted in Fig-
ure 5. The backprojected line is iteratively generated
using the Bresenham algorithm. Meanwhile the cor-
responding scanline in the target volume is traversed
simultaneously. For every line step generated by the
Bresenham rasterizer in the original volume, one voxel
in the scanline is accessed. The voxel intensity at the
integer position generated by the line rasterizer is di-
rectly copied to the currently considered target voxel.

By repeating the process for all scanlines in the tar-
get volume, the entire volume dataset is transformed
according to matrix A. For each scanline, the backpro-
jected positions of its endpoints have to be computed.
These backprojected endpoints are then used for ini-
tializing the line rasterization algorithm.

3.1. Implementation of the Algorithm

The complete algorithm is shown as pseudocode in
Figure 7. It requires an input volume dataset {v ijk}
and a rigid transformation A. After performing the
transformation, the result volume {wijk} is returned.
For the sake of simplicity, we suppose that the in-
put and output volume datasets have the same dimen-
sions. It is also assumed that in both volumes the lower
left voxel of the front slice is at the coordinate origin

(0,0,0). This corresponds to the assumptions made in
Section 2.

In practice it might be reasonable to place the out-
put volume’s boundaries in a different way. The axis-
aligned bounding box of a rotated volume normally
has a different size because its corner voxels lie out-
side of the original boundary. When the volume is
translated, it would be useful to also translate the posi-
tion of the output volume in world coordinates. These
changes could be easily incorporated into the algo-
rithm by adding appropriate coordinate offsets during
the computations.

The initializeBresenham() and next-
BresenhamStep() procedures are assumed to con-
tain the respective elements of the line rasterization
algorithm. An explanation of the Bresenham method
can be found in [Fv82] as well as in the original work
[Bre65]. An example of an implementation in 3D is
available at [Pen92].

It is possible that a backprojected scanline lies partly
or entirely outside of the original volume. Thus the
validity of each generated voxel position is checked
within the innermost loop. The necessary coordi-
nate boundary tests account for a big portion of the
method’s computational complexity.

3.2. Line Error Correction

The new algorithm described in Section 3.1 and shown
in Figure 7 works well for most transformations. How-
ever when the volume is rotated by a steep angle, con-
siderable distortion is visible in the result. The reason
for this effect is the way the Bresenham algorithm gen-
erates discretized line steps.

1 2 3 4 5 6 1 2 3 4 5 6

2

Bresenham steps along
dominant axis

Figure 6: Steps generated by the line algorithm can
correspond to line segments that are longer than 1.0.

The Bresenham algorithm selects as dominant axis
the coordinate axis along which the line endpoints
have their largest distance. The line generation method
then iterates along this dominant axis. In each step a
new integer voxel position with an incremented dom-

(* Define constant background voxel intensity *)
const DEFAULT INT := ...

function transformVolume({vijk} :Volume(IJK), A :Matrix4x4)
var

{wijk} : Volume(IJK) (* Result volume *)
i,j,k : Integer (* Coordinate loop counters *)
start : Point4d (* Double datatype 4d-vectors *)
end : Point4d
i’,j’,k’: Integer (* Current backprojected point *)

begin

(* i, j and k iterate through the target volume *)
for k := 1 to K do

for j := 1 to J do

(* Project start and end of scanline back into original volume *)
start := A−1 · (0 j-1 k-1 1)T

end := A−1 · (I-1 j-1 k-1 1)T

(* Initialize line generation using computed line ends *)
(i’,j’,k’) := initializeBresenham(start, end)

for i := 1 to I do
if (i’,j’,k’) is within volume boundaries then

wijk := vi′j′k′
else

wijk := DEFAULT INT
endif

(i’,j’,k’) := nextBresenhamStep()
done

done
done

return {wijk}
end

Figure 7: Pseudocode formulation of the new algorithm.

inant axis coordinate is generated. As a consequence,
each Bresenham step usually covers a line segment
longer than 1.0. This is illustrated in Figure 6 using
a twodimensional example. In 3D, depending on the
line slope, a single discretization step can advance the
position as much as

√
3 along the line.

The result of this discrepancy between line genera-
tion steps and actually processed line length are visible
distortions in the target volume. In fact it could be said
that due to the change of sampling direction when ro-
tating a volume, there is not enough data to fill the cor-
responding areas in the result volume. We solve this
problem by optionally repeating single voxels from the
original volume. In order to decide whether this is
necessary, we have introduced an additional error vari-
able. This decision variable is called ”line error”. The
principle is demonstrated in the following pseudocode
fragment, which is in the context of the code in Fig-
ure 7.

(i’,j’,k’) := initializeBresenham(start, end)

δ := end - start
δdom := max(xδ,yδ,zδ)
{δx1 , δx2} := {xδ , yδ, zδ} \ {δdom}
lineSlope :=

√
(δx1/δdom)2 + (δx2/δdom)2 + 1

lineError := lineSlope - 1.0

for i := 1 to I do
wijk := vi′j′k′

(* Repeat last voxel if lineError > 1 *)
if lineError > 1.0 then

i := i + 1
wijk := vi′j′k′
lineError := lineError - 1.0

endif

(i’,j’,k’) := nextBresenhamStep()
lineError := lineError + lineSlope

done

In this sourcecode, δ is the difference vector be-

tween the line endpoints. Its maximum coordinate is
denoted as δdom, whereas the other two vector compo-
nents are called δx1 and δx2 . Using this information,
the length of the line segment skipped by each Bresen-
ham step (lineSlope) is computed.

Within the inner loop the line error variable is accu-
mulated using the line slope. Whenever the line error
is greater than one after a Bresenham step, the current
original voxel is copied twice into the target volume
instead of only once. Note that we left the necessary
volume boundary checks out of this code fragment for
the sake of clarity.

After adding line error correction to the new vol-
ume transformation algorithm, it produces undistorted
results for all kinds of rigid transformations.

4. EXPERIMENTAL RESULTS

We have implemented a software framework for com-
paring various volume transformation algorithms. In
addition to the new algorithm, we have also developed
own implementations of several variations of the stan-
dard approach. Moreover we included capabilities for
comparing our own results with transformation results
obtained using the popular volume software package
VTK described in [SML98].

Using the benchmarking framework, both the algo-
rithm runtimes and the quality of the produced results
can be examined. In order to measure the quality, one
volume transformation algorithm is selected as refer-
ence. The result of each of the other approaches is
then compared on a voxel-to-voxel basis to the refer-
ence volume.

Algorithm Minimum Average Maximum
Runtimes [msecs]

Nearest N. 984 1003 1046
Trilinear 1141 1543 2203
New method 156 178 188
N.N. (vtk) 140 392 578
Cubic (vtk) 125 2117 3079

Relative differences [%]
Nearest N. 0.0 0.34 0.49
Trilinear 0.0 0.17 0.24
New method 0.0 0.34 0.49
N.N. (vtk) 0.0 0.34 0.49

Table 1: Benchmark results with input volume CThead
(256x256x113 voxels). Rotations around x-axis with
angles from 0◦ to 360◦ and a stepping of 10◦ (36 trans-
formations).

Tables 1 and 2 contain the benchmarking results of
two test series. In both experiments a number of trans-
formations was generated automatically, each of which
was then used as input parameter for all algorithms.

We have recorded minimum, average and maximum
runtimes and relative variance for all test runs. The in-
put volumes used for the benchmarks have been taken
from the Stanford volume data archive [Lev02]. They
were converted to 8-bit voxel depth because of limita-
tions in our current implementation.

We compared the following algorithms in the ex-
periments: Nearest N. is the standard approach with
nearest-neighbour interpolation, but without the opti-
mized matrix-vector product. Trilinear is the same
with trilinear interpolation. New method is our new
algorithm, still without a number of possible optimiza-
tions. N.N. (vtk) is the Visualization Toolkit’s stan-
dard approach with nearest-neighbour interpolation,
which includes many optimizations (see [SML98]).
Cubic (vtk) is the Toolkit’s algorithm with cubic in-
terpolation, which provides a considerably bigger in-
terpolation kernel. This algorithm was used as the ref-
erence algorithm for quality comparisons in all exper-
iments.

Algorithm Minimum Average Maximum
Runtimes [msecs]

Nearest N. 12906 15527 19671
Trilinear 7563 19011 28015
New method 1907 5117 9922
N.N. (vtk) 2266 6054 9656
Cubic (vtk) 9734 33277 55547

Relative differences [%]
Nearest N. 0.41 1.17 1.75
Trilinear 0.16 0.46 0.71
New method 0.41 1.58 3.01
N.N. (vtk) 0.41 1.17 1.75

Table 2: Benchmark results with input volume bunny-
ctscan (512x512x360 voxels). Rotations around y-axis
with angles from 0◦ to 180◦ and a stepping of 60◦,
multiplied with an x-axis rotation of 15◦ (3 transfor-
mations).

Figure 8 shows example renderings of volume trans-
formation results produced by different algorithms.

5. DISCUSSION AND FUTURE WORK

We have presented a novel approach for applying
transformations to volume data. Unlike existing meth-
ods, it is aimed at improving runtime performance.
Our experiments indicate that the algorithm is con-
siderably faster than the standard approach because it
does not have to explicitly transform voxel positions or
compute the nearest-neighbour interpolation. Instead
integer positions are generated by the modified Bre-
senham algorithm, which is relatively cheap to com-
pute. This allows for direct copying of voxel intensi-
ties.

(a) Unrotated volume (b) Nearest Neighbour

(c) New method (d) Cubic (vtk)

Figure 8: Volume transformation results

Our method produces results comparable in terms
of quality to nearest neighbour interpolation in most
situations, and only slightly worse for some cases. We
have so far limited our considerations to isotropic vol-
ume datasets and transformations that do not include
scaling. We hope to overcome these limitations in the
future by further modifying the line error correction.

Efficient optimization techniques exist that are not
yet used in our current implementation of the new ap-
proach. At the moment every Bresenham-generated
voxel position is tested against the volume boundaries.
These tests constitute a big share of the implementa-
tion’s computational complexity. By determining the
intersections of the backprojected scanline with the
original volume before discretizing the line, it will be
possible to eliminate these boundary checks.

Another important issue when dealing with volume
data is the way how memory is accessed. Ideally the
data should be processed in a linear, sequential man-
ner. This ensures best utilisation of caching mecha-
nisms existing in the computer hardware. We do al-
ready partially exploit cache coherence by traversing
the output volume according to its structure in mem-
ory. But a sequential access mode is more difficult to
achieve when reading from the original volume. De-
pending on the angle of backprojected lines, consec-
utive Bresenham steps may read from different scan-
lines or even slices. This seriously hampers caching

efficiency. Thus we intend to investigate ways for im-
proving cache utilisation in our algorithm.

6. ACKNOWLEDGEMENTS

We would like to thank Urs Kanus and Dirk Staneker
for interesting and helpful discussions on the topic of
volume transformation as well as for reviews of early
drafts of this paper.

This work has been supported by the DFG project
VIRTUE.

7. REFERENCES

[Bre65] J.E. Bresenham. Algorithms for computer
control of a digital plotter. IBM Systems Journals,
4(1):25–30, 1965.

[CK00] Baoquan Chen and Arie E. Kaufman. 3d vol-
ume rotation using shear transformations. Graphi-
cal Models, 62(4):308–322, 2000.

[Fv82] J. D. Foley and A. van Dam. Fundamentals of
Interactive Computer Graphics. Addison-Wesley,
1982.

[KS86] A. Kaufman and E. Shimony. 3d scan-
conversion algorithms for voxel-based graphics.
In Proceedings of Workshop on Interactive 3D
Graphics, pages 45–75, October 1986.

[LC99] A. Leu and M. Chen. Modeling and ren-
dering graphics scenes composed of multiple vol-
umetric datasets. Computer Graphics Forum,
18(2):159–171, June 1999.

[LCN98] B. Lichtenbelt, R. Crane, and S. Naqvi. In-
troduction To Volume Rendering. Hewlett-Packard
Professional Books, 1998.

[Lev88] M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applications,
8(3):29–37, May 1988.

[Lev02] M. Levoy. The Stanford volume data
archive. http://www-graphics.stanford.edu/
data/voldata/, 2002.

[Pen92] B. Pendleton. line3d - 3D Bresenham’s (a
3D line drawing algorithm). ftp://ftp.isc.org/pub/
usenet/comp.sources.unix/volume26/line3d, 1992.

[SML98] W. Schroeder, K. Martin, and B. Lorensen.
The Visualization Toolkit. Prentice Hall PTR, sec-
ond edition, 1998.

[TQ97] Tommaso Toffoli and Jason Quick. Three-
dimensional rotations by three shears. Graphical
models and image processing: GMIP, 59(2):89–
95, 1997.

[Wol90] G. Wolberg. Digital Image Warping. IEEE
Computer Society Press, 1990.

