

Ročník 2011 Číslo IV

Digital Signal Soft-Processor for Audio and Video Processing
M. Pristach1, A. Husár2, L. Fujcik1, T. Hruška2, K. Masařík2

1 Dept. of Microelectronics, FEEC, BUT Brno, Technická 10, 616 00 Czech Republic
2 Dept. of Information Systems, FIT, BUT Brno, Božetěchova 2, 612 66 Czech Republic

E-mail: xprist00@stud.feec.vutbr.cz, ihusar@fit.vutbr.cz, fujcik@feec.vutbr.cz,
hruska@fit.vutbr.cz, masarik@fit.vutbr.cz

Abstract:
The paper presents a digital signal soft-processor DVSP that was designed using architecture description
language ISAC by a tool for processor design called Lissom. First, a basic version of the processor with simple
RISC instruction set was designed. Then, based on the target audio and video-processing applications, several
instruction set extensions were added. Architecture of the designed processor is described in this paper.
Processor was synthesized for several Xilinx FPGAs and synthesis and performance results are presented.

INTRODUCTION

Digital signal processing applications require
increasingly higher throughput while maintaining
real-time performance. High-performance digital
signal processors may be used, however, processors
that run on high frequencies consume a lot of energy
and are more expensive than simpler processors.
To optimize cost and power of a processor
with respect to a certain application and performance
requirements, application-specific instruction set
processors (ASIPs, e.g. [1]) are used. This paper
presents an application-specific digital signal
processor DVSP (Digital Video Soft-Processor)
that was designed for audio and video processing.

Design and optimization of an ASIP is a process
that is very time-consuming and requires people
with special skills. In order to make ASIP design
more effective, special tools that accelerate
this process are needed. One of these tools
is developed in project Lissom.
The Lissom project is centered on an architecture
description language (ADL) ISAC [2]. Architecture
description languages are described in [3]. Both
the instruction set architecture and the micro-
architecture (the processor pipeline) can be described
in ISAC. Then, from the model in the ISAC language,
C language compiler, assembler, several types
of simulators [4] and synthesizable hardware
representation in VHDL can be automatically
generated.

Fig. 1: Block diagram of processor DVSP

DESIGN OF THE PROCESSOR

There are several steps in an ASIP design. First,
a base instruction set must be designed; this design
is already affected by the target application but
special instructions may not be included yet.
This basic instruction set and especially its binary
coding must be prepared for a large number
of extensions. Initial design of the processor pipeline
can be done at this design stage. A guide
for designing soft-processors on FPGAs can be found
in [5], chapter 11.
Then the whole processor was described by the ISAC
language. From this description, assembler and
simulator to debug and optimize the design were
generated. Also VHDL code was generated and
synthesized in order to determine processor's physical
properties.
Because there is only one description of the processor
in the ISAC model, changes can be done quickly
in one place and they are immediately reflected in the
generated tools and hardware.
After verifying the basic version of the processor,
modifications with respect to the target application
or application domain are done.
Several instruction set extensions were added
to the base instruction set to accelerate specific parts
of the target application. The resulting processor
DVSP and impact of the instruction set extensions
on performance are described in the following
sections.

ARCHITECTURE OF THE
PROCESSOR

Processor DVSP is a 16-bit digital signal soft-
processor designed mainly for implementation
on FPGAs. The instruction set is partially based
on a low-power microcontroller MSP430 from Texas
Instruments [6], however compared to the MSP430,
the micro-architecture is pipelined and highly
optimized for implementation on FPGAs.
The processor utilizes Harvard architecture
with separated address spaces for data and program.
Instructions are of fixed length of 32 bits. Data
memory is 16-bit wide and is addressed by 8-bit
bytes. The base data type of the processor is a 16-bit
signed value coded in two's complement.
The architecture defines two register fields, each
register is 16 bits wide. The first register field
contains 16 general purpose registers, the second one
contains 16 special registers.
Several special features like support of zero-overhead
cycles, multiplication with 32-bit result, 32-bit
accumulator and access to data or program memory
by pointers with auto-increment and modulo
addressing were added. Block diagram of the
processor in simplified form is shown in Fig. 1.

Instruction set

Instructions are divided into four groups. The first
group contains arithmetical and logical instructions:
additions, subtractions, multiplications, shifts and
logical operations. The second and third groups
contain unconditional and conditional movements,
and jumps. Conditions of moves and jumps are based
on signed comparison of source data with zero.
The fourth group contains special operations such
as indirect access to data memory (load, store), load
constant from program memory, call subprogram
and return from subprogram.
Binary coding of any instruction can be divided
into two parts: operation code and operands.
Operation code is 8 bits wide, 6 bits define
the operation, one bit defines accumulator mode
usage and one is reserved for the future extensions.
Arithmetical, logical and movement instructions
consist of three operands – one destination and two
sources. Destination and each source operand can use
any addressing mode. Processor supports up to 16
addressing modes. In this version there are 7 different
modes supported: access to the general or special
registers field, positive or negative constant, access
to input/output queues, access to memory
with address from a general register and access
to memory through pointers with optional auto-
increment.
To accelerate 32-bit arithmetical operations, special
instructions such as multiplication of signed
and unsigned values, or support for computations
with carry flag were added.

Pipeline description

The DVSP has a 4-stage pipeline that consists
of the following stages:

� FE (Fetch) – instruction fetching and program
counter value modification; zero-overhead
loop support is implemented in this stage
as well,

� ID (Instruction Decode) – instruction
decoding, register value reading, memory
address calculation (for load and store
instructions), initiation of memory access,
initiation of input FIFO access,

� EX (Execute) – finalization of memory
or input FIFO access, result calculation,
condition evaluation, register and program
counter write-back,

� ST (Store) – accumulation to the 32-bit
accumulator, storing result to data memory
or to an output FIFO.

The whole pipeline may be stalled in the case that
empty input FIFO is read in the ID stage or when
an instruction wants to write into full output FIFO
in the ST stage. No operand value forwarding
(e.g. [7]) is supported. Instructions that write
to a register have 2 cycles latency. This allows us

to save area and increase working frequency while
keeping the pipeline simple. Latency of 2 cycles
for access to registers usually does not impose
significant performance limitation because pairs
of independent instructions can be usually found
in the source code (e.g. loop unrolling creates such
independent instructions).

Input and output queues

The processor uses input and output queues
for communication with the outside world, FIFO
buffers are used for continuous data flow processing.
They are implemented outside the processor where
the user can easily set their size. One of the typical
interconnections into a multi-core processing
platform is shown in Fig. 2 where three processors
DVSP are connected by FIFOs.

Interconnection through FIFOs is especially suitable
for multi-core stream-processing applications, where
several processing filters can be mapped on each
core. Then the hardware FIFOs and pipeline stalling
will automatically take care of data transfer
scheduling and synchronization.
Several programming models such as Stream-IT [8]
or other dataflow-based approaches can be used
to program such multi-core processor.

Access to memory with pointers

The processor supports two means of accessing the
memory. For data memory, basic access
with load/store instructions through address stored
in a register field with offset is available, also
an addressing mode that uses register value as address
is available. The other possibility is using special
registers called pointers which provide access
to memory indirectly. There are two pointers for data
memory – one for reading and one for writing.
For program memory, it is possible to directly load
a constant using instruction MOVI, or to use code
pointer register for reading constants stored
in the program memory.
Each pointer supports auto-increment which gives
the ability to quickly access sequential data
or constants.

Pointers can also be used for cyclic buffers
for repetitive loading/storing of data from addresses
in a given range (modulo addressing).
Dedication of special registers for auto-increment
and modulo addressing complicates compilation from
the C language, but greatly increases the processor
performance and data throughput.

Accumulator

The DVSP contains one 32-bit accumulator to
accelerate typical DSP operations. The accumulator is
placed in the store stage and uses output
of the arithmetic-logic unit (ALU). Accumulator is
very useful in applications that compute sum of data
like convolution, correlation or total spectral power
of input signal. Detailed scheme of the accumulator is
shown in Fig. 3.

Zero-overhead cycles support

The most time-consuming parts of a DSP application
are executed in for-loops. When only standard RISC
(Reduced Instruction Set Computer) instructions are
available, in each for-loop, loop counter must be
modified, loop end condition calculated
and a conditional branch must be resolved.
This requires at least 2 instructions; also some
of the branch delay slots may stay unused. Loop
unrolling can be done, but this has a negative effect
on the code size.
Zero-overhead cycles support hardware uses specially
designed control of next instruction address
calculation. This provides execution of loops without
any unnecessary instructions. Before loop start, three
special registers for loop control are initialized.
This special feature saves up to 5 instruction clock
cycles for each loop iteration. Detailed scheme
of the program counter with zero-overhead cycles
support is shown in Fig. 4.

 Fig. 2: Block diagram of typical usage in a FPGA

Fig. 3: Detailed scheme of accumulator

APPLICATIONS OF THE PROCESSOR

The DVSP is dedicated to signal processing
applications. The main application for which
the processor has been optimized was to calculate
the spectral power of the input signal. Fast Fourier
Transformation (FFT) based on Cooley-Tukey
algorithms with decimation in time [9] was used.
The algorithm was written in assembly language
and optimized for this processor. Internal operations
use 32-bit arithmetic to obtain more accurate results.
Spectral power calculation of one FFT window
(order 8, 256 samples) takes about 135 000 cycles.
The processor is suitable for other applications like
FIR, IIR filter or control checksum calculation.
For example, calculation of CRC16 for 1 byte
of input data takes 8 cycles, for CRC32 it takes
11 cycles.

IMPLEMENTATION AND RESULTS

The processor was implemented in FPGAs Xilinx
Spartan 3 and Spartan 6. The result of synthesis
for different FPGAs is shown in Tab. 1 where
utilization of area and maximum clock frequency are
compared. The results were obtained by Xilinx ISE
Design Suite 12.4. Look-up tables (LUT) are used
only for core and registers fields. Program and data
memory are synchronous and they are placed
in BRAM blocks. Read only memory (ROM)
or read/write memory (RWM) can be used
as program memory. When RWM is used, it is
necessary to load the program into the memory,
for example by serial peripheral interface (SPI).
Usage of SPI gives the possibility to quickly change
the program without requiring the whole design
reimplementation during development.

Tab. 1: Comparison of implementation in FPGAs Xilinx

Family Device LUT [-] fclk [MHz]
Spartan3 xc3s200-5 1846 67.588
Spartan3e xc3s500e-5 1897 76.892
Spartan6 xc6slx16-3 1377 62.041
Virtex4 xc4vlx25-12 2097 124.723
Virtex5 xc5vlx30-3 1458 139.447
Virtex6 xc6vlx75t-3 1400 120.683

During development, the processor was tested
on convolution algorithm application (FIR filter).
Impact of special features on execution time is shown
in Fig. 5. The program was written in assembly
language and the result was calculated from 4
samples. Five versions of the processor were
compared:

• version A – general purpose processor without
any special features,

• version B – previous version with accumulator
added,

• version C – previous version with zero-
overhead cycles support added,

• version D – previous version with one pointer
for program memory added,

• version E – previous version with two pointers
for data memory added.

Fig. 4: Detailed scheme of program counter with zero-overhead cycles support

A B C D E

0

20

40

60

80

vers ion of processor

t
[c

lo
ck

 p
e

ri
od

s
]

Fig. 5: Effect of instruction set extension on cycle count
of convolution calculation

CONCLUSION

This paper presents design of the digital signal
processor DVSP that was optimized for several audio
and video processing algorithms, mainly for spectral
power calculation that uses Fast Fourier Transform.
The processor was designed using an application-
specific processor design tool Lissom that uses
architecture description language ISAC to capture
the processor's instruction set and pipeline design.
The Lissom tool provides tool-chain and hardware
description generators that allow regeneration of all
the required programming and simulation tools
and hardware description after a change in the
processor design was made. This approach provides
fast design space exploration where the designers can
easily test what impact the changes have and it allows
them to quickly find a suitable balance between
the processor performance and used area.
Original instruction set did not offer enough
processing power, therefore several instruction set
extensions and other modifications were introduced.
These changes allowed processing of input data
with 7 times higher throughput, while the area
increased only 2 times.
Another important aspect of the processor design is
usage of input and output FIFOs that offer a great
advantage for multi-core stream-processing
applications. When using streaming programming
model, each instance of the processor core can serve
as a DSP filter and the FIFOs take care
of synchronization automatically. We plan to explore
this problematic further because the size of required
area allows us to place multiple instances
of the DVSP processor even on a small FPGA.

ACKNOWLEDGMENTS

The research has been supported by project
Prospective applications of new sensor technologies
and circuits for processing of sensor signals
No. FEKT-S-11-16, by the grant of MPO Czech
Republic FR-TI1/038 and by the Research Plan MSM
No. 0021630528.

REFERENCES

[1] Ienne, P., Leupers R., Customizable Embedded
Processors: Design Technologies and
Applications, Morgan Kaufmann, 2006, ISBN
978-0-12-369526-0.

[2] Masařík, K., Hruška, T., Kolář, D., Language
and Development Environment For
Microprocessor Design Of Embedded Systems,
In: Proceedings of IFAC Workshop on
Programmable Devices and Embedded Systems
PDeS 2006, Brno, CZ, FEEC BUT, 2006,
p. 120-125, ISBN 80-214-3130-X.

[3] Mishra, P., Dutt, N., Processor Description
Languages, Morgan Kaufmann, 2008, ISBN
978-0-12-374287-2.

[4] Přikryl, Z., Hruška, T., Masařík, K., Husár, A.,
Fast Cycle-Accurate Compiled Simulation,
In: 10th IFAC Workshop on Programmable
Devices and Embedded Systems, PDeS 2010,
Pszczyna, PL, IFAC, 2010, p. 97-102, ISSN
1474-6670.

[5] Nurmi, J., Processor Design: System-On-Chip
Computing for ASICs and FPGAs, Springer,
2007, ISBN 978-1-4020-5529-4.

[6] Texas Instruments: MSP430x2xx Family User
Guide [online], Texas Instruments, 2011
[cit. 2011.09.05]. Available from WWW:
http://www.ti.com/lit/ug/slau144h/slau144h.pdf.

[7] Shen, J. P., Lipasti, M., Modern Processor
Design: Fundamentals of Superscalar
Processors, McGraw-Hill, 2004, ISBN
978-0-07-057064-1.

[8] Gordon, M. I., Compiler Techniques for
Scalable Performance of Stream Programs on
Multicore Architectures, PhD thesis,
Massachusetts Institute of Technology, 2010.

[9] Lyons, R. G., Understanding Digital Signal
Processing, 2nd Edition, Prentice Hall, 2004,
ISBN 978-0-13-108989-1.

