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Abstract:  
The paper presents a digital signal soft-processor DVSP that was designed using architecture description 
language ISAC by a tool for processor design called Lissom. First, a basic version of the processor with simple 
RISC instruction set was designed. Then, based on the target audio and video-processing applications, several 
instruction set extensions were added. Architecture of the designed processor is described in this paper. 
Processor was synthesized for several Xilinx FPGAs and synthesis and performance results are presented. 
 

INTRODUCTION 

Digital signal processing applications require 
increasingly higher throughput while maintaining 
real-time performance. High-performance digital 
signal processors may be used, however, processors 
that run on high frequencies consume a lot of energy 
and are more expensive than simpler processors. 
To optimize cost and power of a processor 
with respect to a certain application and performance 
requirements, application-specific instruction set 
processors (ASIPs, e.g. [1]) are used. This paper 
presents an application-specific digital signal 
processor DVSP (Digital Video Soft-Processor) 
that was designed for audio and video processing. 
 

Design and optimization of an ASIP is a process 
that is very time-consuming and requires people 
with special skills. In order to make ASIP design 
more effective, special tools that accelerate 
this process are needed. One of these tools 
is developed in project Lissom. 
The Lissom project is centered on an architecture 
description language (ADL) ISAC [2]. Architecture 
description languages are described in [3]. Both 
the instruction set architecture and the micro-
architecture (the processor pipeline) can be described 
in ISAC. Then, from the model in the ISAC language, 
C language compiler, assembler, several types 
of simulators [4] and synthesizable hardware 
representation in VHDL can be automatically 
generated. 
 

Fig. 1: Block diagram of processor DVSP 



 

DESIGN OF THE PROCESSOR 

There are several steps in an ASIP design. First, 
a base instruction set must be designed; this design 
is already affected by the target application but 
special instructions may not be included yet. 
This basic instruction set and especially its binary 
coding must be prepared for a large number 
of extensions. Initial design of the processor pipeline 
can be done at this design stage. A guide 
for designing soft-processors on FPGAs can be found 
in [5], chapter 11. 
Then the whole processor was described by the ISAC 
language. From this description, assembler and 
simulator to debug and optimize the design were 
generated. Also VHDL code was generated and 
synthesized in order to determine processor's physical 
properties.  
Because there is only one description of the processor 
in the ISAC model, changes can be done quickly 
in one place and they are immediately reflected in the 
generated tools and hardware. 
After verifying the basic version of the processor, 
modifications with respect to the target application 
or application domain are done.  
Several instruction set extensions were added 
to the base instruction set to accelerate specific parts 
of the target application. The resulting processor 
DVSP and impact of the instruction set extensions 
on performance are described in the following 
sections.  

ARCHITECTURE OF THE 
PROCESSOR 

Processor DVSP is a 16-bit digital signal soft-
processor designed mainly for implementation 
on FPGAs. The instruction set is partially based 
on a low-power microcontroller MSP430 from Texas 
Instruments [6], however compared to the MSP430, 
the micro-architecture is pipelined and highly 
optimized for implementation on FPGAs.  
The processor utilizes Harvard architecture 
with separated address spaces for data and program. 
Instructions are of fixed length of 32 bits. Data 
memory is 16-bit wide and is addressed by 8-bit 
bytes. The base data type of the processor is a 16-bit 
signed value coded in two's complement. 
The architecture defines two register fields, each 
register is 16 bits wide. The first register field 
contains 16 general purpose registers, the second one 
contains 16 special registers. 
Several special features like support of zero-overhead 
cycles, multiplication with 32-bit result, 32-bit 
accumulator and access to data or program memory 
by pointers with auto-increment and modulo 
addressing were added. Block diagram of the 
processor in simplified form is shown in Fig. 1. 
 
 

Instruction set 

Instructions are divided into four groups. The first 
group contains arithmetical and logical instructions: 
additions, subtractions, multiplications, shifts and 
logical operations. The second and third groups 
contain unconditional and conditional movements, 
and jumps. Conditions of moves and jumps are based 
on signed comparison of source data with zero. 
The fourth group contains special operations such 
as indirect access to data memory (load, store), load 
constant from program memory, call subprogram 
and return from subprogram. 
Binary coding of any instruction can be divided 
into two parts: operation code and operands. 
Operation code is 8 bits wide, 6 bits define 
the operation, one bit defines accumulator mode 
usage and one is reserved for the future extensions. 
Arithmetical, logical and movement instructions 
consist of three operands – one destination and two 
sources. Destination and each source operand can use 
any addressing mode. Processor supports up to 16 
addressing modes. In this version there are 7 different 
modes supported: access to the general or special 
registers field, positive or negative constant, access 
to input/output queues, access to memory 
with address from a general register and access 
to memory through pointers with optional auto-
increment. 
To accelerate 32-bit arithmetical operations, special 
instructions such as multiplication of signed 
and unsigned values, or support for computations 
with carry flag were added.  

Pipeline description 

The DVSP has a 4-stage pipeline that consists 
of the following stages: 

� FE (Fetch) – instruction fetching and program 
counter value modification; zero-overhead 
loop support is implemented in this stage 
as well, 

� ID (Instruction Decode) – instruction 
decoding, register value reading, memory 
address calculation (for load and store 
instructions), initiation of memory access,  
initiation of input FIFO access, 

� EX (Execute) – finalization of memory 
or input FIFO access, result calculation, 
condition evaluation, register and program 
counter write-back, 

� ST (Store) – accumulation to the 32-bit 
accumulator, storing result to data memory 
or to an output FIFO. 

 
The whole pipeline may be stalled in the case that 
empty input FIFO is read in the ID stage or when 
an instruction wants to write into full output FIFO 
in the ST stage. No operand value forwarding 
(e.g. [7]) is supported. Instructions that write 
to a register have 2 cycles latency. This allows us 



 

to save area and increase working frequency while 
keeping the pipeline simple. Latency of 2 cycles 
for access to registers usually does not impose 
significant performance limitation because pairs 
of independent instructions can be usually found 
in the source code (e.g. loop unrolling creates such 
independent instructions).  

Input and output queues 

The processor uses input and output queues 
for communication with the outside world, FIFO 
buffers are used for continuous data flow processing. 
They are implemented outside the processor where 
the user can easily set their size. One of the typical 
interconnections into a multi-core processing 
platform is shown in Fig. 2 where three processors 
DVSP are connected by FIFOs.  

 
Interconnection through FIFOs is especially suitable 
for multi-core stream-processing applications, where 
several processing filters can be mapped on each 
core. Then the hardware FIFOs and pipeline stalling 
will automatically take care of data transfer 
scheduling and synchronization. 
Several programming models such as Stream-IT [8] 
or other dataflow-based approaches can be used 
to program such multi-core processor. 

Access to memory with pointers 

The processor supports two means of accessing the 
memory. For data memory, basic access 
with load/store instructions through address stored 
in a register field with offset is available, also 
an addressing mode that uses register value as address 
is available. The other possibility is using special 
registers called pointers which provide access 
to memory indirectly. There are two pointers for data 
memory – one for reading and one for writing. 
For program memory, it is possible to directly load 
a constant using instruction MOVI, or to use code 
pointer register for reading constants stored 
in the program memory. 
Each pointer supports auto-increment which gives 
the ability to quickly access sequential data 
or constants.  

Pointers can also be used for cyclic buffers 
for repetitive loading/storing of data from addresses 
in a given range (modulo addressing).  
Dedication of special registers for auto-increment 
and modulo addressing complicates compilation from 
the C language, but greatly increases the processor 
performance and data throughput.  

Accumulator 

The DVSP contains one 32-bit accumulator to 
accelerate typical DSP operations. The accumulator is 
placed in the store stage and uses output 
of the arithmetic-logic unit (ALU). Accumulator is 
very useful in applications that compute sum of data 
like convolution, correlation or total spectral power 
of input signal. Detailed scheme of the accumulator is 
shown in Fig. 3. 

Zero-overhead cycles support 

The most time-consuming parts of a DSP application 
are executed in for-loops. When only standard RISC 
(Reduced Instruction Set Computer) instructions are 
available, in each for-loop, loop counter must be 
modified, loop end condition calculated 
and a conditional branch must be resolved. 
This requires at least 2 instructions; also some 
of the branch delay slots may stay unused. Loop 
unrolling can be done, but this has a negative effect 
on the code size.   
Zero-overhead cycles support hardware uses specially 
designed control of next instruction address 
calculation. This provides execution of loops without 
any unnecessary instructions. Before loop start, three 
special registers for loop control are initialized. 
This special feature saves up to 5 instruction clock 
cycles for each loop iteration. Detailed scheme 
of the program counter with zero-overhead cycles 
support is shown in Fig. 4. 

 Fig. 2: Block diagram of typical usage in a FPGA 

 

Fig. 3: Detailed scheme of accumulator 



 

APPLICATIONS OF THE PROCESSOR 

The DVSP is dedicated to signal processing 
applications. The main application for which 
the processor has been optimized was to calculate 
the spectral power of the input signal. Fast Fourier 
Transformation (FFT) based on Cooley-Tukey 
algorithms with decimation in time [9] was used. 
The algorithm was written in assembly language 
and optimized for this processor. Internal operations 
use 32-bit arithmetic to obtain more accurate results. 
Spectral power calculation of one FFT window 
(order 8, 256 samples) takes about 135 000 cycles. 
The processor is suitable for other applications like 
FIR, IIR filter or control checksum calculation. 
For example, calculation of CRC16 for 1 byte 
of input data takes 8 cycles, for CRC32 it takes 
11 cycles. 

IMPLEMENTATION AND RESULTS 

The processor was implemented in FPGAs Xilinx 
Spartan 3 and Spartan 6. The result of synthesis 
for different FPGAs is shown in Tab. 1 where 
utilization of area and maximum clock frequency are 
compared. The results were obtained by Xilinx ISE 
Design Suite 12.4. Look-up tables (LUT) are used 
only for core and registers fields. Program and data 
memory are synchronous and they are placed 
in BRAM blocks. Read only memory (ROM) 
or read/write memory (RWM) can be used 
as program memory. When RWM is used, it is 
necessary to load the program into the memory, 
for example by serial peripheral interface (SPI). 
Usage of SPI gives the possibility to quickly change 
the program without requiring the whole design 
reimplementation during development. 

 
 
 
 
 
 
 
 

 

Tab. 1: Comparison of implementation in FPGAs Xilinx 

Family Device LUT [-] fclk [MHz] 
Spartan3 xc3s200-5 1846 67.588 
Spartan3e xc3s500e-5 1897 76.892 
Spartan6 xc6slx16-3 1377 62.041 
Virtex4 xc4vlx25-12 2097 124.723 
Virtex5 xc5vlx30-3 1458 139.447 
Virtex6 xc6vlx75t-3 1400 120.683 

 
During development, the processor was tested 
on convolution algorithm application (FIR filter). 
Impact of special features on execution time is shown 
in Fig. 5. The program was written in assembly 
language and the result was calculated from 4 
samples. Five versions of the processor were 
compared: 

• version A – general purpose processor without 
any special features, 

• version B – previous version with accumulator 
added, 

• version C – previous version with zero-
overhead cycles support added, 

• version D – previous version with one pointer 
for program memory added, 

• version E – previous version with two pointers 
for data memory added. 

 
 
 
 
 
 

Fig. 4: Detailed scheme of program counter with zero-overhead cycles support 
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Fig. 5: Effect of instruction set extension on cycle count 
of convolution calculation 



 

CONCLUSION 

This paper presents design of the digital signal 
processor DVSP that was optimized for several audio 
and video processing algorithms, mainly for spectral 
power calculation that uses Fast Fourier Transform. 
The processor was designed using an application-
specific processor design tool Lissom that uses 
architecture description language ISAC to capture 
the processor's instruction set and pipeline design. 
The Lissom tool provides tool-chain and hardware 
description generators that allow regeneration of all 
the required programming and simulation tools 
and hardware description after a change in the 
processor design was made. This approach provides 
fast design space exploration where the designers can 
easily test what impact the changes have and it allows 
them to quickly find a suitable balance between 
the processor performance and used area. 
Original instruction set did not offer enough 
processing power, therefore several instruction set 
extensions and other modifications were introduced. 
These changes allowed processing of input data 
with 7 times higher throughput, while the area 
increased only 2 times.  
Another important aspect of the processor design is 
usage of input and output FIFOs that offer a great 
advantage for multi-core stream-processing 
applications. When using streaming programming 
model, each instance of the processor core can serve 
as a DSP filter and the FIFOs take care 
of synchronization automatically. We plan to explore 
this problematic further because the size of required 
area allows us to place multiple instances 
of the DVSP processor even on a small FPGA.  
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