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ABSTRACT

Accurate acquisition of camera position and orientation is crucial for realistic augmentations of camera images. Computer
vision based tracking algorithms, using the camera itself as sensor, are known to be very accurate but also time-consuming. The
integration of inertial sensor data provides a camera pose update at 100 Hz and therefore stability and robustness against rapid
motion and occlusion. Using inertial measurements we obtain a precise real time augmentation with reduced camera sample
rate, which makes it usable for mobile AR and See-Through applications.
This paper presents a flexible run-time system, that benefits from sensor fusion using Kalman filtering for pose estimation. The
camera as main sensor is aided by an inertial measurement unit (IMU). The system presented here provides an autonomous ini-
tialisation as well as a predictive tracking procedure and switches between both after successfull (re)-initialisation and tracking
failure respectively. The computer vision part performs 3D model-based tracking of natural features using different approaches
for yielding both, high accuracy and robustness. Results on real and synthetic sequences show how inertial measurements
improve the tracking.

Keywords: Augmented Reality, Sensor fusion, Tracking.

Figure 1: The integrated camera and IMU hardware.

1 INTRODUCTION

To obtain accurate registration of the camera pose,
2D/3D correspondences provided by vision-based
tracking algorithms are fused with measurements of
a miniature inertial measurement unit (IMU) [7] [1]
[16] [6]. The hardware we use is shown in Figure 1.
It includes a color firewire camera integrated with a
miniature IMU that processes sensor readings at very
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high update rates and triggers the image grabber, hence
supplying a synchronized stream of video and iner-
tial measurements, namely acceleration and angular
velocity, which are integrated to obtain relative pose
estimates. However, without a constant correction,
noise and computational errors lead to a rapid drift in
the camera position and orientation. For this reason,
it is essential to track and update image features in a
reliable way.

Different types of feature detectors [2] [10], descrip-
tors [12] [9], alignment [18] and update methods [8] can
be applied. The detection and description of point fea-
tures can be performed in a robust, Euclidean or even
affine invariant manner [11]. This is mostly very time-
consuming and not absolutely required during tracking.
In some cases it can even be a disadvantage since infor-
mation gets lost through the abstracted description of
the feature. Another approach is to directly use the pixel
intensity information, what is less time-consuming but
sensitive to illumination and viewpoint changes. How-
ever, the latter can be eventually compensated, if pre-
dictions of the camera pose are available. A frequent
update of the features’ descriptors increases their un-
certainties and often introduces drift into the camera
registration. Hence, the careful selection and long-term
tracking of a small set of landmarks is desirable [13].

2 APPROACH

Our approach differentiates two phases of the vision-
based tracking: initialisation and predictive tracking.
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The system (re)-initialisation performs the computation
of the initial camera parameters within a global refer-
ence coordinate system without any assumption about
the approximate pose. It has to work robustly without
user interventions and has to be very accurate. Errors
within the initial orientation are eminently critical, as
the acceleration measurements of the IMU include
gravity and therefore are interpreted with respect to the
orientation (see 3.4). The predictive tracking processes
consecutive frames. It has to be very efficient and can
take advantage of temporal coherence and the high-
quality prediction with the IMU as additional sensor.
The pose computation bases on a Kalman filter, which
processes the camera data with the measurements of
the IMU and generates the best estimate of the current
pose.
In [4] we used Euclidean invariant SIFT features [10]
for both, initialisation and tracking, and updated the
feature map and descriptors constantly. We keep this
approach for the initialisation of the tracker only, since
very robust results have been reached.
For the on-line tracking we take advantage of the IMU
measurements and designed a vision-based tracking
module, that applies simple feature tracking. In the
first implementation stage, our features (so-called
anchors) are 3D patches described by image textures.
They are generated offline using structure from motion
techniques and build a map of well-defined landmarks,
which are highly stable and precisely defined in 3D.
We register those anchors within the current image by
pre-warping their descriptors with help of the predicted
camera pose of the Kalman filter.

3 FRAMEWORK
The run-time system consists of three interacting com-
ponents and a database, which contains all relevant of-
fline data. The computer vision component is further
divided into an initialisation (see 3.2) and a predictive
tracking part (see 3.3) and has access to the database
for either querying data for initialisation or for tracking.
Initialisation yields a 6 DOF pose, whereat the predic-
tive tracking generates 2D/3D correspondences for sin-
gle frames.
The IMU does not only provide measurements of its
acceleration and angular velocity, but is also able to au-
tonomously determine a very precise estimate of its ab-
solute orientation, which is helpful for initialisation.
The sensor fusion component (see 3.4) receives mea-
surements from both sensors, and updates the state of
the Kalman filter using the appropriate model with re-
spect to the given kind of data. As the IMU runs at
100 Hz, the state of the Kalman filter is refreshed at
the same rate, making a high-quality pose estimation
available to the vision-based predictive tracking. More-
over, this component controls the application flow by
solely being authorised to switch between initialisation

Figure 2: Architecture of the run-time system.

and tracking. If the computer vision component reports
failures, the tracking can be holded up with the IMU
data over a short period of time before leading to a di-
vergence of the Kalman filter, that leads to reinitialisa-
tion. Figure 2 shows the architecture of the system.

3.1 Offline Preparation
The vision-based component requires some pre-
processed input data for initialisation and tracking.
This data is generated within an offline step for every
3D scene and camera setup and exported to an xml file
for permanent storage and re-use. At system startup,
the data is imported to the run-time system by the
database component. The database contains:

• Reference images - these consist in fully calibrated
images that show the 3D scene from a sufficient
number of viewpoints. Furthermore a group of 3D
SIFT features is associated to every reference image.
They are used during initialisation to get a pose es-
timate for a given camera frame. Reference images
can be either exported by an automatic 3D scene re-
construction step [15] or they can be manually cali-
brated using a CAD model [4].

• Anchors - they represent persistent features defined
in 3D. Currently, we process 3D patches, given as
four 3D corners and a surface normal, with an asso-
ciated image texture that has been sampled from the
reference image with the most frontal view onto the
plane.

3.2 Initialisation
The initialisation is achieved by matching SIFT features
between the live video frame and pre-calibrated refer-
ence images, for which the features are known in 3D.
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To deal with multiple reference images efficiently, this
task is divided into two steps:
Firstly, the database is queried with the current cam-
era frame to find the most likely reference image using
a content based similarity measure [14]. At the cur-
rent implementation, the image retrieval is based on
color histograms. Additionally, the initial orientation
estimate of the IMU is exploited by finding the closest
reference pose with respect to the camera view direc-
tion. The roll angle is neglected, as the SIFT features
used for obtaining 2D/3D correspondences in the sec-
ond step, are invariant against in-plane rotations. The
second step is carried out with the pre-selected refer-
ence image and its associated features as detailed in [4].

3.3 Predictive Tracking
The task of this module is the generation of 2D/3D cor-
respondences by locating the 3D anchors provided by
the database within the current camera frame using the
pose prediction of the sensor fusion module. This is
done within the following steps:

1. query anchors from the database, that are visible
from the predicted pose

2. pre-warp their descriptors to the appearance
expected from that viewpoint

3. register the anchors within small uncertainty regions
around the expected positions using the transformed
descriptors

4. establish 2D/3D correspondences by associating
each registered 3D anchor centroid to its measured
image position

5. perform an outlier rejection to verify valid corre-
spondences

6. pass all valid correspondences to the sensor fusion

7. report a tracking failure, if there have been few in-
liers

8. update the search radius

As mentioned in paragraph 3.1 we define an anchor as a
3D plane that is described by an image texture. The lat-
ter is sampled from a reference image with a preferably
frontal view onto that plane. As the reference images
are fully calibrated and a pose prediction for the cur-
rent frame is available, the pre-warping of each anchor
description (step 2) is described by a homography

H = K(δR−δT ·~n
T

d
)K−1

whereδR,δT is the relative camera motion between
the current prediction and the reference image, the an-
chor description has been sampled from, and~n,d are the

plane parameters given in the camera coordinate system
of the reference image [5]. The camera intrinsicsK are
assumed to be static. An example anchor description
and pre-warping is given in Figure 3 a,b. The closer the
prediction comes to the actual pose the more is the cur-
rent anchor appearance resembled by the pre-warped
one and the more confident becomes the registration.
But we made the experience that small distorsions do
not harm the registration.
Referring to step 3 the pre-warped descriptors are lo-
cated within the current frame by performing a block
matching within a small uncertainty region around the
expected anchor positions. The latter are simply com-
puted by projecting the 3D centroids with the current
pose prediction. Typically we extract a patch (16x16
or 32x32 pixels) from the warped texture around the
centroid and use this for the registration. To be inde-
pendent of intensity changes likeα f (i, j), we use the
normalized cross correlation as similarity measure [3].
Computing this measure for all pixel positions around
the expected image location within a square search re-
gion, we find the position that minimizes the criterium
and take this as the correct anchor location for estab-
lishing a 2D/3D correspondence. Figure 3 points out
this procedure.
As the performance of the block matching (assuming a
fixed patch size) depends exclusively on the size of the
search region, we keep this as small as possible while
assuring a stable tracking. We give a fixed upperTmax

and lowerTmin threshold for the search radiusR in pixel
but choose this parameter dynamically during tracking
(step 8). After initialising this parameter with the up-
per value, we update the search range for the next video
imageRt+1 depending on the maximal observed feature
displacementDmax using the following rules:

Rnew = Dmax+Tmin

α =
Dmax

Rt

Rt+1 = (1−α) ·Rt +α ·Rnew

Rt+1 = min(Tmax,max(Tmin,Rt+1))

The formulas are interpreted as follows: the weight
α ∈ [0..1] (asDmax≤ Rt ) defines the influence ofRnew,
which merely depends on the measured discplacements
(and the constantTmin), onto the changeover ofRt , the
currently used search radius, toRt+1, the radius for the
next frame. If the maximal measured displacement is
near to the search radius (Dmax is near toRt ), the weight
onto the meassured displacement gets near to1 and as
a result the search range increases quickly. This is very
important as the block matching can’t return the cor-
rect registration, if it does not lie in focus. IfDmax is
far away fromRt , the weight becomes small, hence the
search range decreases slowly.
The set of correspondences resulting from the anchor
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Figure 3: pre-warping and block matching: a: attached
image texture as stored in the database, b: pre-warped
texture, c: start position for block matching within cam-
era frame

registration are filtered by RANSAC-like outlier rejec-
tion [5]. As the RANSAC algorithm also yields a 6
DOF pose, a tracking failure is not only reported, if
there have been few inliers, but also if the vision-based
pose estimate is completely different from the predic-
tion.

3.4 Sensor Fusion
This component runs a Kalman filter on the measure-
ments from both sensors and makes a pose estimate
available to the vision-based tracking. More details can
be found in [17] and [7][6].

Camera Motion Model

To fit the Kalman filter framework the motion of the
camera is described as a nonlinear system model [17]
[7]:

xk+1 = f (xk,uk,vk) , vk ∼ N(0,Qk) (1)

with state vectorxt = [p v q]T representing the camera
position, velocity and orientation quaternion in a global
coordinate system. This equation is used to predict the
pose at each time step by integrating the sensor data
ut = [ω a]T composed of the angular velocityω and the
accelerationa. As the sensor and the camera have dif-
ferent coordinate systems the data has to be transformed
using the so-called hand-eye calibrationRX. We assume
that this transformation is only rotational i.e. the cam-
era and sensor center points are very close.

pk+1 = pk +v·∆t +(R(q) ·RX ·a+g) · ∆t
2

2

vk+1 = vk +(R(q) ·RX ·a+g) ·∆t

qk+1 = A(θ) ·qk

with

A(θ) = cos(
||θ ||

2
) · I4 +sin

( ||θ ||/2
||θ ||

)
·Ω

θ = ω ·∆t

Ω(ω) =




0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0




This integration of sensor data is also known as dead-
reckoning.

Every system update increases the pose uncertainty
described by a covariance matrix P

Pk+1 = AkPkA
T
k +Qk , Ak =

∂ f
∂x

(x̂k,uk) (2)

by adding the system noise covarianceQ resulting from
the sensor data uncertainty.

Using Vision Measurements

While the exclusive integration of the sensor data leads
to a rapid drift in the pose prediction, the vision-based
tracking provides 2D/3D correspondences that are used
as measurements to correct the state.

• 2D/3D Correspondences2D feature positions are
related to the filter state using their 3D points and
the camera projection model [17] [7]. The measure-
ment equation for one feature pointξi = (u,v) in the
camera frame corresponding to the 3D pointsi in the
world coordinate system is expressed as

[
Zu− f X
Zv− f y

]
= 0 (3)

with [X Y Z]T the coordinate of the feature point in
the camera system i.e.[X Y Z]T = RT(q) · (si − p)

The uncertainties of the 2D and 3D feature points
have to be modelled as independent normal distribu-
tion to fit in the Kalman filter. The covariances of the
2D feature points are given by the block matching.

• 2D/2D Correspondences2D/2D correspondences
of points or lines could also be used in the Kalman
filter by relating the velocity of the features to that
of the camera. The derivation of the measurement
equation can be found in [17]. The expression for
one feature[ξk ψk] is

[− f α , f , ξkα−ψk]vk = 0 , (4)

α =
ψ̇Dis− ψ̇Rot

ξ̇Dis− ξ̇Rot

with ξ̇Dis, ψ̇Dis being the velocity of the feature due
to the camera displacement,ξ̇Rot, ψ̇Rot being the ve-
locity due to the rotation andf being the focal length
of the camera.
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• Divergence Monitoring Loss of feature points over
a longer period, e.g. because of successive tracking
failures, causes the Kalman filter to diverge. As the
filter is not able to recover itself, it has to be reini-
tialized externally (see 3.2). If the variance of the
errorh(x̂k,0) over the last frames excesses the stan-
dard gaussian error, this is taken as a hint for an ir-
reparable drift in the filter state and causes the sensor
fusion component to request an initial pose estimate
from the computer vision part.

Data Synchronization

The data provided by the inertial and vision sensors has
to be synchronized to provide a correct real time pose
estimation. Two problems have to be solved to obtain
proper synchronization:

Multi-Rate sensor fusion The computer vision and the
IMU run at different sampling rate. The Kalman filter
is able to perform several system updates before new
point correspondences are provided. A similar multi-
rate sensor fusion problem can be found in the vehicle
navigation literature where GPS position updates are
not available as often as inertial data. In our system,
the camera shutter is triggered by the IMU so that the
camera images are synchronized with the inertial data
at hardware level. As the IMU is running at 100 Hz, the
camera can be run at 25 or 12.5 Hz.

Lag of vision data The computer vision (CV) takes
some time to process a camera frame (Figure 4). So the
point correspondences are delayed when they are pro-
vided to the sensor fusion. The Kalman filter performs
system updates (SU) for each IMU data sample. As
long as no vision data is received the system state and
IMU data are buffered. When point correspondences
are available, the system state is reverted to the vision
data timestamp and updated to current time with the
buffered IMU data.

4 RESULTS

We tested our system on live video using the hardware
represented in section 1. Figures 9-10 show some aug-
mentations from the live video, where the camera has
been triggered with 12.5 Hz. The system has also been
tested on synthetic data to provide repeatable results.
Some synthetic offline sequences have been generated
with resolution 720x576 pixels. The observed 3D scene
is a textured 3D model of a room. Four reference im-
ages and 40 planar texture patches (anchors) have been
pre-processed as input for the vision-based initialisation
and the predictive tracking. As the scene has been ren-
dered from a 50 Hz camera track, the ground truth pose
data is available at 50 Hz and can be compared to the
estimated pose of our system. The inertial sensor data
has also been computed from the virtual camera track

Buffer

Estimated Pose

IMU data

SU SU SU MU

CV

Camera Frames

Frame Frame

Figure 4: Synchronization of the run-time system.
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Figure 5: Position (x coordinate) of the camera with
use of IMU data, vision data at 5 Hz.

and simulates the synchronized 100 Hz samples of an
IMU moving on this track.

Data fusion at low vision rates

The system has been tested at different vision data rates
from 5 to 50 Hz. The improvement of the tracking us-
ing the IMU data is most visible at low vision rates.
Figures 5 and 6 show the estimated camera position in
comparison with the ground truth data with and without
the use of IMU data.

Without the IMU support, the pose computation is
less accurate and the Kalman filter even diverges so that
several re-initialisations are needed. The IMU data al-
low to track rapid camera movements which are diffi-
cult to follow with a purely vision based system.

WSCG2006 Short Papers Proceedings 113 ISBN 80-86943-05-4



0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5

2

x−
co

or
d

Frames

Camera Position (without IMU)

Ground truth
Estimated
Initialisation

Figure 6: Position (x coordinate) of the camera without
use of IMU data, vision data at 5 Hz.
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Figure 7: Orientation error of the camera with and with-
out use of IMU data.

Figure 7 plots the orientation error with and without
the use of the IMU data. As the IMU gives very ac-
curate gyroscopic measurements, the system is able to
compute the rotational part of the camera pose very pre-
cisely.

Pose prediction

As the IMU delivers an update rate of 100 Hz, the cam-
era pose is updated at the same rate. Hence the current
pose is always available to the system so that it can pro-
vide a high-quality prediction of the feature positions to
the vision part. The search ranges of the block matching
can then be reduced, as shown in figure 8.

5 CONCLUSION
We designed a flexible run-time system for real-time
3D camera tracking fusing vision-based data with
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Figure 8: Search ranges needed by the block match-
ing.

Figure 9: Predictive Tracking: predicted and matched
patches are overlayed.

Figure 10: Video frame with live augmentation. The
texture is correctly overlayed on the video image using
the computed camera pose from the system.
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inertial sensor data. As the IMU provides angular
velocity and acceleration measurements at a refresh
rate of 100 Hz, the camera pose is updated at the same
rate. Simultaneously, the camera sample rate can be
reduced, whereat a high-quality pose prediction is
nevertheless passed to the vision-based tracking.
We showed, that the integration of inertial data im-
proves the tracking significantly, while minimizing
CPU costs and yielding high precision and rendering
frame-rate, which is crucial for mobile See-Through
applications. At the current state the vision-based
tracking module operates exclusively with 3D planar
features that have been generated offline. Therefore
the tracking is restricted to parts of the environment
that have been reconstructed within the preparation
step. Future work includes the online reconstruction of
temporal features, which are less confident but hold up
the tracking, whenever the camera observes additional
territory.
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