
Out of Core continuous LoD-Hierarchies for Large
Triangle Meshes

Hermann Birkholz
Research Assistant

Albert-Einstein-Str. 21
Germany, 18059, Rostock

hb01@informatik.uni-rostock.de

ABSTRACT
In this paper, algorithms for the simplification and reconstruction of large triangle meshes are described. The
simplification process creates an edge-collapse hierarchy in external memory, which is used for online recon-
struction. The hierarchy indices are renamed after simplification, in order to allow fast reconstructions and the
hierarchy is extended with information for view-dependent rendering.
The simplification makes no restrictions with the production of the hierarchy, but produces the same hierarchy as
In-Core algorithms. The amount of memory, which is used for the simplification is adjustable.

Keywords
Out of Core, Level of Detail, triangle meshes, view dependent rendering

1. INTRODUCTION
Large polygonal meshes can easily be acquired with
current 3d scanning hardware [Lev00]. Those meshes
exceed the internal memory and the rendering capa-
bilities of modern personal computers. For interactive
visualization only partitions of the mesh can be used.
In order to offer this, view-dependent approximations
of the mesh must be fast computable. Such as for In-
Core-meshes, continuous Level of Detail (cLoD)
methods can be used to create fast view-dependent
approximations. Because the mesh data does not fit
into main memory these techniques must be adopted
for such large meshes. Once created, a cLoD-
hierarchy in external memory can be used for view-
dependent online approximation of the original mesh.
Therefor only visible parts of the hierarchy are read
from external into internal memory and refined, until
a time- or memory-limit is reached. These parts can
then be visualized with the graphic hardware. In this

paper a new simplification algorithm is presented,
which creates cLoD-hierarchies for large meshes.
This algorithm produces the same simplification hier-
archy such as In-Core methods but it stores only par-
titions of the mesh in internal memory. The maximum
memory footprint of the mesh is adjustable by the
user. Furthermore it is demonstrated how to use the
resulting hierarchy file to generate view-dependent
approximations of the mesh.

2. PREVIOUS WORK
In-Core cLoD Systems often build their hierarchies
by collapsing edges [Hop96] or contracting vertices
[Gar97] of the mesh surface. For each col-
lapse/contraction operation an error value is com-
puted, which determines the sequence of the col-
lapses or of the contractions. For each edge collapse
operation in manifold meshes two triangles are re-
moved from the mesh surface. The two merged verti-
ces and the removed triangles are stored in the LoD-
hierarchy together with the error value.

For the simplification of large meshes various tech-
niques have been presented. The spanned mesh sim-
plification algorithm [San00] uses an external in-
dexed mesh and an external heap with all collapsible
edges, in order to determine the simplification se-
quence. The algorithm reads the first k (depending on
internal memory size) edges from the queue and the
mesh parts, which belong to the edges. Afterwards all

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

WSCG2006 Full Papers proceedings 95 ISBN 80-86943-03-8

possible simplification operations for the edges,
which are in memory, can be accomplished. Due to
the nearly uniform distribution of the edges with
small collapse errors, there will be hardly advantages
from the locality of the read mesh parts. This will
result in frequent mesh updates and load/store opera-
tions and thus long computation times. An advantage
however is the fact that the simplification sequence is
identical to In-Core algorithms.

In order to overcome the problem of the uniform dis-
tribution, hierarchical clustering is used to partition
the mesh into locally connected blocks. Hoppe
[Hop98] creates a block hierarchy and simplifies the
mesh portions in the leaf blocks (edge collapse) ex-
cept the edges, which cross the block borders. After
the simplification, the leaf blocks are hierarchically
merged and then simplified again. This is repeated,
until the whole mesh is stored in the root cluster. Due
to the forbidden collapses of edges, which cross the
cluster-borders, this algorithm cannot limit the inter-
nal memory, used for the clusters. Furthermore the
simplification sequence is limited by the cluster bor-
ders and might deliver bad results.

Cignoni [Cig02] suggests an external memory man-
agement based on octree subdivision. The manage-
ment is able to overcome the problems with block
borders and has a wide field of applications. For their
simplification example however, they avoid the use
of a heap structure for the correct simplification se-
quence, in order to take advantage of locality.

Another approach based on cluster hierarchies was
presented by Lindstrom [Lin03]. His method consists
of three steps. First, the mesh is clustered with an
memory insensitive clustering technique, which is
based on the clustering schema of Rossignac and
Borrel [Ros93]. This step produces an uniform grid
with cells, which contain either one or no vertex. In
the second step, an octree is constructed over the
grid, where the position of the merged vertices is de-
termined with the QEM [Gar97]. In the third phase
the hierarchy is used for view-dependent rendering of
the mesh. The drawbacks of this method are the ini-
tial clustering, which might remove mesh details, if
the grid-size is too high, and the octree schema,
which produces hierarchies of a lower quality as edge
collapse hierarchies.

So called “Processing Sequences” for computations
on large meshes were introduced by Isenburg [Ise03].
Their mesh representation allows them to stream the
mesh through internal memory and to apply changes
to this local region. They show the simplification of
large meshes as an example, but they neither produce
a hierarchy, which can be used for reconstruction, nor
they use a simplification order similar to In-Core
methods.

The algorithm, which is presented in this publication
produces simplification sequences, which are identi-
cal to In-Core algorithms ,and it takes advantage of
local surface regions.

3. OUT OF CORE LOD
Simplification
For mesh simplification, the half-edge collapse
[Kob98] method is used. This means that an edge is
collapsed to one of its vertices.

A B C

Figure 1 shows a half-edge collapse operation. The
edge between vertex A and B is collapsed to vertex
C. Vertex C is placed on the same position as vertex
B. The simplification error of each vertex is com-
puted with the Quadric Error Metrics [Gar97]. For
each vertex all adjacent vertices are tested as poten-
tial collapse targets. The target which causes the
smallest error value is stored for each vertex. Other
error metrics, are applicable too. A simplification
sequence equal to In-Core methods can be reached by
executing only collapses which are locally minimal.
That means, all adjacent vertices will cause higher or
equal collapse errors. By iteratively applying locally
minimal collapses, the hierarchy will become the
same as if the collapses are applied in a global se-
quence (lowest first).

This fact can be used while simplifying large meshes.
Local connected portions of the mesh can be read and
all collapses for locally minimal errors can be ap-
plied.

Figure 2 shows the distribution of collapse errors for
the “Stanford Bunny” mesh. The red/orange colors
indicate high/medium collapse errors, while green
colors indicate low collapse errors. As noticeable, the
collapse errors are evenly distributed over the mesh.
This also leads to an even distribution the locally
minimal collapse errors (bright green dots). Further-
more the figure shows regions of low collapse errors
that are surrounded by regions of low collapse errors.
The surrounding vertices with high error values will
not be collapsed until their neighbor vertices reach
similar values. Higher collapse errors can only be
reached by applying local simplifications in the low
error regions.

Figure 1. Half.-edge collapse

WSCG2006 Full Papers proceedings 96 ISBN 80-86943-03-8

Starting with a small partition of the mesh in internal
memory, all locally minimal collapses in the partition
are executed or the partition is expanded when no
locally minimal collapse error can be found. If the
internal memory limit is reached, the memory data is
written back to external memory and the process is
restarted around the vertex with the smallest collapse
error in the last partition.

In this implementation, inner-vertices, border-
vertices and near-border-vertices are distinguished.
For all vertices in internal memory all surrounding
triangles are also read into the internal memory. For
border-vertices not all vertices in the neighborhood
have already been read from external memory. For
this kind of vertex no collapse weight is computed,
because not all possible collapse targets remain in
memory. The near-border-vertices are completely
surrounded by already loaded vertices but they have
at least one border-vertex in their neighborhood.
Because of the complete neighborhood, a collapse-
target and –weight can be computed, but due to the at
least one border-vertex in the neighborhood, it is
impossible to determine if the weight is locally mini-
mal. The inner-vertices have only other inner- or
near-border-vertices around itself. Therefore locally
minimum collapse errors can only be found among
inner-vertices. Figure 3 shows a configuration with
one inner-vertex (black), the surrounding near-
border-vertices (black outline) and the border-
vertices (stippled outline).

Whenever no locally minimal collapse error can be
found, the border of the local partition has to be ex-
panded. Therefore the near-border-vertex with the
smallest collapse error is chosen and all of its linked
border-vertices are updated to near-border-
vertices, by reading their neighborhood from external
memory. This changes the state of the prior near-
border-vertex to an inner-vertex, which can be
checked for a locally minimal collapse error. Figure 4
shows the expansion of the upper right near-border
vertex from figure 3.

Because always the near-border-vertex with the
smallest collapse error is chosen, the In-Core part
will always grow towards vertices with locally mini-

Figure 3. Local mesh partition with one inner
vertex

Figure 4. Local mesh partition with two inner
vertices

Figure 2. Collapse error distribution for the
“Stanford Bunny” mesh

WSCG2006 Full Papers proceedings 97 ISBN 80-86943-03-8

mal collapse errors. If a maximum number of verti-
ces or triangles is exceeded in main memory, the In-
Core vertices and triangles are written back to exter-
nal memory. The simplification process then contin-
ues with the prior near-border-vertex, which would
cause the smallest collapse error.

The original data is presented as an array of triangles
and an array of vertices in external memory. For each
vertex we also store the list of adjacent triangles.
Changed and new vertices are stored separately and
provided with hierarchy informations.

For each collapse operation the pair of merged verti-
ces is stored in the resulting vertex. Furthermore the
collapsed triangles are referenced in the resulting
vertex. The collapsed vertices and triangles are re-
moved from internal memory and all vertices, whose
neighborhood changed (including the new vertex),
are updated and checked for locally minimal collapse
errors.

The simplification algorithm can be summarized as
follows:

1. Choose and read a start vertex.

2. Read the adjacent vertices of the start vertex.
(Make the start vertex to near-border-vertex.)

3. Expand the local partition by choosing the near-
border-vertex with the smallest collapse error
and update all border-vertices around it to near-
border-vertices.

4. Execute all possible collapses among inner-
vertices.

5. If the internal memory limit is reached, write in-
ternal data to external memory. Choose the near-
border-vertex with the smallest error as new start
vertex, read it and continue with step 2.

6. If further simplification is required, continue with
step 3.

In the first step the vertex with the index 0 is nor-
mally chosen as start vertex. The second step reads
the local neighborhood of the start vertex (triangles
and vertices). After the second step, the start vertex is
in the near-neighbor-vertex group and the other
vertices are in the border-vertices group. The third
step always expands the partition in internal memory,
to find inner-vertices, whose collapse error is locally
minimal. The fourth step executes all possible col-
lapses within the inner-vertices. After that, a mem-
ory check is performed, to limit the use of internal
memory. If no further local minimal collapse errors
could be found, the algorithm restarts at the best posi-
tion to find a local minimal collapse error. The last
steps are repeated until a stop condition is reached.
This can be for instance a maximum simplification
error or a minimum number of triangles.

The indexed vertices and triangles of the internal
partition are stored in AVL-Trees for fast access.
With these trees, fast search operations can be per-
formed in the local partition of the indexed mesh. The
near-border-vertices are referenced in additional
priority queues, for fast access to the vertex that will
cause the smallest collapse error.

After the simplification, the remaining vertices and
triangles are written to the hierarchy file for the use as
approximation root.

Vertex Index Translation
In order to use the hierarchy file for the approxima-
tion of the original mesh, it has to be reconstructed
top-down. This demands fast decisions how to dis-
tribute the triangles after each vertex split. This step
can be accelerated by translating the hierarchy indices
to an inorder structure. That means, the left subtree
always contains only vertex indices which are smaller
than, and the right subtree contains only vertices,
which are greater than the according root node. To-
gether with the information of the triangle vertices in
the finest level, one can decide the correct child ver-
tex in each split by only comparing vertex indices.
All vertex indices in the left subtree are applied to the
left child and the same is true for the right subtree.

View Dependent Rendering
After the translation of the hierarchy indices, some
information for view-dependent rendering is added to
the hierarchy. Fast view-frustum culling for each ver-
tex in the hierarchy is supported with bounding-
spheres. As soon as the bounding sphere of a vertex
is outside the frustum, its complete subtree can be
culled. For backface-culling and contour-based ap-
proximations, normal-cones [Xia96] for each vertex
are computed. Whenever the cone points away from
the viewer in the whole bounding-volume, the associ-
ated subtree can be culled.

The rendering process starts with the root of the hier-
archy. All vertices, which were not collapsible and
the triangles, which were not collapsed in the simpli-
fication process, construct the base mesh. These base
vertices are put into a priority queue sorted according
to their collapse error, which is divided by the dis-
tance to the viewer plane (greatest weight first). Ver-
tices, which does not pass the view frustum test or the
normal cone test are not put into the queue. Now the
first vertex from the queue can be split into its child
vertices iteratively and be replaced in the queue by its
child vertices. The two associated triangles are ap-
pended to the triangle list during each split. Before
the split, it is examined whether the child vertices are
already in internal memory. If not, they are loaded
from external memory. For internal memory man-
agement, an individual frame number is assigned to

WSCG2006 Full Papers proceedings 98 ISBN 80-86943-03-8

all internal vertices. This variable is always set to the
number of the frame, in which its associated vertex
was last split. All parent vertices of a pair of leaf-
nodes in the internal vertex tree remain in a priority
queue, sorted by their frame number (smallest first).
Whenever memory must be reallocated, the first ver-
tex from the queue is used to remove its child vertices
from memory. After that, its parent vertex is put into
the queue, if both of its child-vertices are leaf-nodes
in internal memory. This memory management allows
to restrict the memory, which is used by the internal
vertex tree.

The whole approximation process is terminated when
a given time period elapses or a desired number of
triangles is reached. So a minimum frame rate can be
guaranteed. In order to reach higher frame rates it
would also be possible to make use of frame-to-frame
coherency. Therefor one must use the approximated
vertex tree from the last frame and apply both col-
lapse- and split-operations to it. Furthermore two
priority queues are required. One for the split-
candidates (greatest error first) and one for the col-
lapse-candidates (smallest error first). Both queues
must be balanced in each frame depending on the
view parameters.

4. RESULTS
Simplification
A prototype implementation of the simplification
algorithm was tested with several meshes. The results
for small meshes were determined from the “Arma-
dillo” mesh from "Stanford University Computer
Graphics Laboratory". For medium sized meshes we
used the “Asian Dragon” from “XYZ RGB Inc”. For
tests with large meshes the “David” mesh from the
“Digital Michelangelo Project” and a randomly cre-
ated rough planet surface were used. Table 1 shows
the data of the meshes.

Name Vertices Triangle

Armadillo 172,974 345,944

Asian Dragon 3,609,455 7,218,906

Rough Planet 67,108,866 134,217,724

David1 69,881,083 139,749,343

Table 1. Test meshes for simplification

The amount of triangles in internal memory was lim-
ited to 1,500,000 triangles for the local surface por-
tions. This is equal to a memory consumption of
around 230 MB. Due to the repeated tests for local
minimal collapse errors, this algorithm executes of

1 Version of the mesh repaired with PolyMender [Ju04]

written by Tao Ju

course much slower than In-Core algorithms. Table 2
shows the minimum, maximum and average "col-
lapses per second", the overall simplification time
and the hierarchy size in external memory for the test
models. All test have been done on a Athlon 3800+
PC with 4GB of internal memory.

Name
Arma-
dillo

Asian
Dragon

Rough
Planet

David

Avrg col/s 1663 1137 672 667

Min col/s 1397 797 97 103

Max col/s 1904 1825 1783 1764

Time h:m 0:02 0:53 27:44 29:14

Disc size in
MB

19.7 413 7680 7855

Table 2. Simplification test results

The watertight meshes “Armadillo”, “Asian Dragon”
and “Rough Planet” were all simplified to a tetrahe-
dron as the base mesh. The base mesh of the “David”
model consists of 1463 vertices after simplification
due to small errors in the mesh surface. Small
meshes, which can be cached completely by the oper-
ating system, show significantly higher collapse rates
as large meshes. But the average rate of large meshes
does not fall below 40% of the average rate of small
meshes. Compared with other methods the achieved
collapse rates are relatively low. But an implementa-
tion similar to the Spanned Mesh [San00] algorithm,
which uses the correct collapse sequence, delivered
much lower ratios, especially for large meshes (e.g 40
hours for the “Asian Dragon”). The main advantages
of the new algorithm are, the hierarchy structure,
which is equal to In-Core simplification algorithms,
and the use of locality on the mesh surface for simpli-
fication.

View Dependent Rendering
The extraction performance for the external collapse
hierarchy is comparable to In-Core variants. The only
difference is, that parts of the hierarchy which does
not remain in internal memory, have to be read during
some frames from external memory. As soon as the
desired hierarchy data remains in internal memory,
there is no difference to InCore algorithms. Due to
the fine granularity of the hierarchy, the extraction
wont influence the desired frame rate very much.

All hierarchies were approximated with a maximum
of 15,000 triangles. The relatively low number of
triangles was chosen due to the approximation algo-
rithm that does not make use of frame to frame co-
herency. An improved approximation algorithm
should easily reach higher numbers of triangles at
high frame-rates. Figures 5 shows approximated
views of the four test models. The approximation
detail can change while the view is moving, because

WSCG2006 Full Papers proceedings 99 ISBN 80-86943-03-8

access to external memory may decrease the number
of triangles, which are visible, in the desired frame
time temporarily.

5. CONCLUSION
In this paper a new algorithm for the simplification of
large meshes was described. It was shown how to use
locally minimal collapse errors on the mesh surface in
order to create collapse hierarchies, which are equal
to ones produced by In-Core methods, while making
use of locality on the mesh surface. The algorithm
shows good simplification ratios compared with the
algorithm of El-Sana [San00], which uses collapse
sequences equal to In-Core algorithms. Furthermore
it was described how to manipulate the hierarchy for
fast triangle updates in the reconstruction process and
its usage the hierarchy for view-depended rendering.

6. ACKNOWLEDGMENTS
I would like to thank Mr. Marc Levoy and the people
working on the Digital Michelangelo Project for pro-
viding their models.

7. REFERENCES
[Cig02] P. Cignoni , C. Montani, C. Rocchini, R.

Scopino, “External memory management and
simplification of huge meshes”. IEEE Transac-
tions on Visualization and Computer Graphics.
2002

[Gar97] M. Garland, P.S. Heckbert, “Surface Simpli-
fication Using Quadric Error Metrics”, SIG-
GRAPH ’97 Conf. Proc., pp. 209-216, 1997

[Hop96] H. Hoppe, “Progressive meshes“, Computer
Graphics, 30(Annual Conference Series),pp. 99-
108, 1996

[Hop98] H. Hoppe, “Smooth View-Dependent Level-
of-Detail Control and its Aplications to Terrain
Rendering,” Proc. IEEE Visualization ’98 Conf.,
pp. 35-42, 1998

[Ise03] M. Isenburg, P. Lindstrom, S. Gumhold, and
J. Snoeyink, “Large Mesh Simplification using
Processing Sequences”, IEEE Visualization 2003,
pp. 465-472, 2003

[Ju04] T. Ju, “Robust Repair of Polygonal Models”,
Proceedings of ACM SIGGRAPH, pp. 888-895,
2004

[Kob98] L. Kobbelt, S. Campagna, J. Vorsatz, and
H.-P. Seidel. „Interactive multi-resolution model-
ing on arbitrary meshes”, In Proceedings of the
25th annual conference on Computer graphics and
interactive techniques, pp. 105-114, 1998

[Lev00] M. Levoy, K. Pulli, B. Curless, S. Rus-
inkiewicz, D. Koller, L. Pereira, M. Ginzton, S.
Anderson, J. Davis, J. Ginsberg, J. Shade, and D.
Fulk, “The Digital Michelangelo Project: 3D
Scanning of Large Statues,” SIGGRAPH 2000,
Computer Graphics Proc., pp. 131-144, 2000

[Ros93] J. Rossignac and P. Borrel, “Multi-
Resolution 3D Approximation for Rendering
Complex Scenes,” Geometric Modeling in Com-
puter Graphics, pp. 455-465, 1993

[Lind03] P. Lindstrom, “Out-of-core construction and
visualization of multiresolution surfaces”, Pro-
ceedings of the 2003 symposium on Interactive
3D graphics, pp. 93-102, 2003

[San00] J. El-Sana and Y.-J. Chiang, “External
Memory View-Dependent Simplification,” Com-
puter Graphics Forum, vol. 19, no. 3, pp. 139-
150, 2000

[Xia96] J. Xia and A.Varshney, “Dynamic View-
dependent Simplification for Polygonal Models”,
Proceedings of IEEE Visualization, pp. 327-334,
1996

Figure 5. Approximated views of the test meshes
(full view and cutout)

WSCG2006 Full Papers proceedings 100 ISBN 80-86943-03-8

	C73-full.pdf
	F37-full.pdf
	G31-full.pdf
	C73-full.pdf
	INTRODUCTION
	ATLAS OF DISCOIDS AND Z-BUFFER
	The atlas of discoid
	Z-Buffer and fragment

	ADAPTATIONS FOR REAL-TIME VISUALISATION
	Geometrical considerations
	Level of details
	Illumination model

	RESULTS
	CONCLUSION AND FUTURE WORKS
	REFERENCES

	C71-full.pdf
	B29-full.pdf

