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Preface

The aim of the thesis is to study mathematical methods of Value at Risk. At first we de-
scribe the basic concepts of Value at Risk. Then we focus specifically on three methods of
computation Value at Risk, namely Historical simulation, Analytical method and Monte
Carlo simulation. We describe the basic principals of these methods and show examples.
Subsequently we compare these methods by selected criteria. Finally we examine the
simulation Monte Carlo in more details and we conduct several simulations. Most of
our computations are performed in the MATLAB® environment and processed in MS
Excel® 2003.

Keywords: Value at Risk, Monte Carlo simulation, Historical simulation, Analytical
method

Alzbéta Hola May 27,2013
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Chapter 1

Introduction

Glyn A. Holton describes in his work History of Value-at-Risk: 1922-1998 [1] the ori-
gin of the name Value at Risk (VaR). Several similar names were used during the 1990’s.
For example:

e dollars-at-risk (DaR)
e capital-at-risk (CaR)
e income-at-risk (IaR)
e earnings-at-risk (EaR)

It seemed that users liked the “-at-risk” moniker, but were uncomfortable labeling
exactly what was “at-risk”. The “dollars” label of DaR was too provincial for use in
many countries.

The “capital” label of CaR seemed too application-specific. Some applications of VaR-
such as VaR limits-were unrelated to capital. The “income” and “earnings” labels of laR
and EaR had accounting connotations unrelated to market risk.

Software vendor Wall Street Systems went so far as to call its software “money-at-
risk”. It is perhaps the uncertainty of the label “value” that made “value-at-risk” attrac-
tive. Also, its use in the RiskMetrics Technical Document added to its appeal. By 1996,
other names were falling out of use.

In 1985 was suggested the name “value-at-risk” originated within JP Morgan.

During the 1990’s, Value-at-Risk (VaR) was widely adopted for measuring market risk
in trading portfolios. Its origins can be traced back as far as 1922 to capital requirements
the New York Stock Exchange imposed on member firms. VaR also has roots in portfolio
theory and a crude VaR measure published in 1945.

There are lots of ways how to access to computing Value at Risk. We can focus on
Conditional Value at Risk (CVaR), marginal VaR, incremental VaR and component VaR,
Gaussian VaR. About these problems we can read for more for example in [2] or [3].

In Chapter 2 we describe methods of computation of Value at Risk, specifically three
most often used ones. These are historical simulation, analytical method known also as
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variance and covariance method and Monte Carlo simulation. We show computation
examples of mentioned methods. Finally we provide a comparison of these methods.

In Chapter 3 we focus on the Monte Carlo simulation. We describe the simulation
process on an example.

Chapter 4 is closely related to Chapter 3. We show different simulation experiments
in this chapter such as accuracy experiment 4.1 or simulation time experiment 4.2.

Value at Risk is a well known problem, that can be studied from many sources. To
name just a few [4] and [5] written by Manfredo and Leuthold,different author is Giorgio
Szegd who wrote the book: Risk Measures for the 21st Century [6] or papers from the
Wharton School of the University of Pennsylvania [7], [8].



Chapter 2

Value at Risk method (VaR)

Value at Risk (VaR) as we know it today originate in 90’s of the 20th century when
world banks and other financial institutions started to use VaR for measuring exchange
rate risk. Then it started to spread also to non-financial corporations to other market
risks. Today it is one of the most widely used method for measuring market risk portfo-
lio.

In this chapter we follow book written by John C. Hull, Option, Futures, and other
Derivatives [9] , Thesis [10] and Bachelor Thesis [11]. More information can be found also
in[12], Section IV.I.

2.1 Definition of VaR

John C. Hull defines Value at Risk in the statement "We are X percent certain that we
will not lose more than V dollars in the next N days."

The variable V is here the Value at Risk. It is a function of two variables:

e N : The time horizon - It is a period of time over which VaR is measured. It is
traditionally measured in trading days rather than calender days. In practise, an-
alysts most frequently set N = 1, because there is not enough data to estimate the
behaviour of market variables over longer period of time.

If when the changes in the value of the portfolio on successive days have indepen-
dent identical normal distributions with mean zero, We can use assume

N-day VaR = 1-day VaR - V'N 2.1)

e X : The confidence level - In this work we will denote it by a. Most frequently used
confidence levels are 95% or 99%."

Value at risk is the maximum amount of money that may be lost on a portfolio over a given
period of time, with a given level of confidence.

INote that in the literature the notation is not consistent and sometimes the confidence level is considered
(1 —«),ie. 95% level corresponds to & = 0.05



As we said VaR is often measured at 95% confidence level and time horizon of one
day. 95% confidence means that there is a 95% chance of the loss on the portfolio being
lower than the VaR calculated. Then we have the following exact definition.

Value at risk is the maximum amount of money that may be lost on a portfolio in 24 hours, with
95% confidence.

Then we can say that the interpretation of VaR is for example: $1 million with these
parameters indicates, that the loss of the portfolio the following day with a 95% proba-
bility will not exceeding $1 million.

You can see the graphic interpretation of VaR in the following three pictures.
In Figure 2.1 the black line at -1.645 means 5% Value at Risk is 1.645. The left area under
the red line represents 5% of the total area under the curve. The right area under the blue
line represents 95% of the total area under the curve. The curve represents a hypothetical
Profit and Lost probability density function. Normal distribution with parameters y =
0,0 = 1. See Appendix A.1.
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Figure 2.1: 5%VaR diagram for Normal distribution

In Figure 2.2 the black line at -6.314 means 5% Value at Risk is 6.314. The left area
under the red line represents 5% of the total area under the curve. The right area under
the blue line represents 95% of the total area under the curve. The curve represents a
hypothetical Profit and Lost probability density function. Student’s ¢- distribution with
one degree of freedom. See Appendix A.2.
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Figure 2.2: 5%VaR diagram for Student’s t-distribution

In Figure 2.3 the black line at 0.193 means 5% Value at Risk is 0.193. The left area
under the red line represents 5% of the total area under the curve. The right area under
the blue line represents 95% of the total area under the curve. The curve represents a
hypothetical Profit and Lost probability density function. Log-normal distribution with

parameters y = 0,0 = 1. See Appendix A.3.
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Figure 2.3: 5%VaR diagram for Log-normal distribution



Remark. Daily Volatilities

In option pricing we usually measure time in years and the volatility of an asset also in
years ("volatility per year"). In VaR calculations we measure volatility in days ("volatility
per day"). Let us denote:

Oyear - VOlatility per year of an asset

O4ay - volatility per day of the asset

and let us assume 252 trading days in a year. Then according to equation (2.1) we can
write that the relationship between these two volatilities is:

Tyear = UgayV 252 (2.2)

or,
Oyear

Ojay = ——=
day = /252

We can approximate the equation (2.2) for different time periods.

2.3)

Example - Single Asset Case

The portfolio consists of a position in a single stock.

The position is worth €5 million in IBM stock. We assume the volatility of IBM 26% per
year. We want to be 95% confident that the loss level over 10 days will not be exceeded.
We also assume that the expected change in the value of the portfolio is zero (this is pos-
sible for short time periods) and that the change in the value of the portfolio is normally
distributed.

Parameters:

Py = €5 million

Tyear = 26%

N =10

a =95%

Firstly following the equation (2.3) we can calculate 0y, -

L 26%
day = 250

We denote ), the standard deviation of the change in the portfolio in 1 day.
Then

= 1.64%

Op = Py - Oday (24)
In our case it is

0, = 5000000 - 0.0164 = €82000

By using formula (2.2) we can calculate the standard deviation of the change in portfolio
in 10 days.

0p10day = 82000 - /10 = €259306.78

As we said we assume that the change is normally distributed. In the Table 2.1 we can
see that for p = 0.95 we have that Qg o5 = 1.654.



Table 2.1: Often used quantiles of normal distribution
p 0508 085 0575 0588 05995
Q, 0012816 16449 1 9600 2 3263 2 5758

VaRogso, 100y = Q0.95 * Op,10days
itis
VaRoss, 104z = 1.645 - 259306.78 = €426559.63
The 10-day 95% VaR for IBM is €426559.63.

Consider next portfolio consisting of €10 million position in Microsoft. Suppose the
volatility per year 32% (corresponds to 2% per day). We will use the same calculation
like in the IBM example. The standard deviation of the change in the value of the portfo-
lioin 1 day is

o = 10000000 - 2% = €200000
the change in 10 days is
0p,10day = 200000 - /10 = €632455.53
Assuming the change is normally distributed, the 10-day 95% VaR is
VaRos9,, 1040y = 1.645 - 632455.53 = €1040389.35

Example - Two-Asset Case

In this case we will consider the portfolio consisting of both €5 000 000 of IBM shares
and €10 000 000 of Microsoft shares. We suppose that the returns on the two shares have
a bivariate normal distribution and the correlation is 0.3 .

A standard result in statistics tells that, if we have two variables X and Y, their stan-
dard deviations are equal to oy and ¢, with correlation coefficient between them equal to
p, the standard deviation of X + Y is given by

Oxiy = \/(7)2( + 02 + 20x0yp (2.5)

We apply this to our previous example and the set X equal to the change in the value
of the position in IBM over 1-day period and Y equal to the change in he value of the
position in Microsoft over 1-day period. In this case

ox = 82000 AND oy = 200000

Following the equation (2.5) the standard deviation of the change in the portfolio value
in 1-day is

ox4y = /820002 + 2000002 + 2 - 82000 - 200000 - 0.3 = €237831.87

The standard deviation of the change in the portfolio value in 10-days is
OX+Y,10day = 237831.87 - /10 = €752090.42

We assume that the mean of change is zero and the change is normally distributed. Then
the 10-day 95% VaR for the portfolio is equal to

VaRosy, 104ay = 752090.42 - 1.645 = €1237188.74



Remark. Benefits of Diversification
In our examples we have just considered:

e The 10-day 95% VaR for the portfolio of IBM shares is €426 559.63
e The 10-day 95% VaR for the portfolio of Microsoft shares is €1 040 389.35
e The 10-day 95% VaR for the portfolio of both is €1 237 188.74
The amount
(426559.63 + 1040389.35) — 1237188.74 = €229760.24

represents the benefits of diversification. If IBM and Microsoft were perfectly correlated,
the amount will be zero. It means the VaR for the portfolio of both would be equal VaR
for the IBM portfolio plus the VaR for Microsoft portfolio.

We can use several different way how to calculate VaR. Between most popular method
belongs historical method or Monte Carlo simulation. We will talk about these methods
in detail later.

2.2 Mathematical definition of VaR

At first we have to say something about quantiles, the following theorem can be found
in article [13].

Theorem 2.2.1 (Quantiles). Given a € [0, 1] the numberq € R is an a-quantile of the random
variable X under the probability distribution P if one of the three equivalent properties below is
satisfied:

1P(X<gq)>a>P(X<gq),

22P(X<g)>aand P(X >¢q) >1—u,

3. Fx(q) > aand Fx(g—) < a with Fx(q—) = lim F(x),

x—q,x<q
where Fx is the cumulative distribution function of X.

Remark. The set of such a-quantiles is a closed interval. Since () is finite, there is a
finite left- (resp. right-) end point g, (resp. g;) which satisfies g, = inf{x € R :
P(X < x) > a} (resp. g7 = inf{x € R: P(X < x) > a} ). With the exception of
at most countably many « the equality g4, = g, holds. The quantile g, is the number
Fla) =inf{x € R: P(X < x) > a}.

We formally define VaR in the following way:

Given confidence level a € [0, 1] the Value at Risk (VaR,) at level « of the final net worth
X with distribution P is the quantile g; of X

VaRy(X) = inf{x e R: P(X > x) <1—a}. (2.6)

2.3 Methods of computing VaR

As we already said, there are several different methods of calculating VaR.
We have two basic approach how to calculate VaR:

8



e Parametric approach - Parametric methods, e.g. variance and covariance method
(sometimes called also analytical method)

e Non-parametric approach - Simulation methods, e.g. historical simulation or Monte
Carlo simulation.

Historical simulation is sometimes denoted as empirical approach.
In this chapter we will describe some of these methods for calculating VaR.

2.3.1 Historical simulation

Historical simulation is one of the simplest and most obvious method to estimate VaR
for many portfolios. Method works on the principle that, based on historical changes in
market factors to determine the possible future profits and losses.

As a first step we have to collect the data which identify market factors that influence
the value of portfolio (yields of individual portfolio instruments). These data are from
the previous period or from the previous periods (dependent on the institution - banks
calculate VaR daily).

Into the resulting time series we include also the present state of the portfolio. Then
from these data we estimate VaR as distribution density quantile.

To obtain historical data of market factors represented by the timing series can be time
consuming. The historical data should be sampled at the daily frequency and should
reach many years into the past.

The risk is measured with price changes:

¢ Relative change in price - if the change is relative to the initial price, than we call it
return (rate of return),

e Absolute change in price,

e Logarithmic change in price.

1-day Period

Denote P; as a price in time ¢ (represents one trading day). Then relative rate of return
(R¢) or just return, between t and t — 1 is

Py — P4
Ry = ————. 2.7
! P4 @7)

Absolute rate of return (Ra;) for the same time period is
Rﬂt = Pt — Ptfl. (28)

Logarithmic rate of return (Rg;) correspond to

P

Rg = In (*) = In(1+Ry). (2.9)
P

Furthermore we will use the relative rate of return.

In the text above R; is described as 1-day return, now we will show how to use it in more

then one day period of time.



k-days Period
Return of the k-days period of time is define as

_ Pt_Pt—k

R (k) P

(2.10)

Linear Portfolio

Lett =1,...,T be individual time periods. When the portfolio is linear and created
by N assets, R;; is the return of the j-th asset in the time period ¢ and w; r is the cur-
rent weight of the j-th asset in this portfolio, then the return of the portfolio, R, can be
calculated as

N
Rps =) wjrRj;. (2.11)
j=1

Non-linear Portfolio

Estimation for the non-linear portfolio is little bit different from the linear. We have to
identify the market factors that influence the portfolio and collect the data of change in
these market factors during some period of time ¢. This timeist = 0,..., T. Then we set
today (the j-th day) T scenarios how will behave the variable tomorrow ((j + 1)-st day )
according to the historical development of the time series.

Let Vik be a value of k-th market variable (k=1,...,n ) in the i-th day (i = 1,...,m).
We suppose that today is the j-th day. Then the i-th scenario of the market variable value
tomorrow ((j + 1)-st day ) is equal to

k k k
1

Vi =V ['kl. (2.12)
43

We calculate the total value of the portfolio for each scenario and we denote it

Piiri= f(Vigi- Vi), (2.13)

where f is function of market variables.
Then we can calculate the relative change

R, = % (2.14)
j

where P; is value of the portfolio in the j-th day.

We showed how to calculate the relative change for linear and non-linear portfolios.
The following process to calculate VaR is for both linear and non-linear portfolios the
same. The technique is from the book [14].

We rank values calculated using equation (2.11).

Rp,q) <+ < Rpr)-

10



And we estimate the empirical a quantile i, defined for 0 < a < 1 due to a given
confidence level by

g — JRaray AfTa € Z 2.15)
2[R(re)) + Ryraj)] A T € Z
Then we calculate VaR as
VaR, = i, Py,

when P, is the initial portfolio value.

Advantages and Disadvantages

An advantage of the historical method is that it is non-parametric, which means it
does not require assumptions on probability distribution. The disadvantage is that the
past may have very different risk characteristics from the future.

2.3.2 Parametric methods

In parametric method, we have to at first decide what we consider a random variable
(R,Ra, Rg, or another risk factor). Parametric approach can be used in two levels:

e Portfolio approach - work with a Ra (R, Rg, or another risk factor) of the whole
portfolio.

e Position approach - work with a Ra (R, Rg, or another risk factor) of individual
assets in portfolio, which together create multivariate distribution.

Portfolio approach - Univariate distribution

There is a lot of univariate parametric methods. In this work we always consider the
conditional distribution to time series R,Ra, Rg, or another risk factor. Factor distribution
can be parametrized with the estimation of time series. The time series have always
constant length.

In this work we will consider:

e Normal distribution,

e Distributions derived from the normal distribution
Student’s t-distribution,
Log-normal distribution.

VaR calculation for Normal distribution

We suppose that the risk factor Ra, absolute return (2.8), has the normal distribution
with parameters y and o (see Appendix A.1),i.e. Ra ~ N(u,c?). For VaR, satisfies:

P[Ra < —VaR,] =1—a.

Parameters y and ¢ can be estimated with using the selective mean value and the
selective standard deviation.

11



Ra—m

. ~ N(0,1)
P Ras—m < —VaRS“—m 1,

—VaR, —m

» =0 11—a)=-P (a) =: —z,.

Now we can easily separate VaR,
VaR, = —m+s-z,, (2.16)

where

m - selective mean value,

s - selective standard deviation,

®~!(a) = z, - inverse distribution function of normal distribution (quantile function).

VaR calculation for Student’s t-distribution

Now we suppose that the risk factor Ra, absolute return (2.8), has the t-distribution
with v degrees of freedom (see Appendix A.2),i.e. Ra ~ t,(a,b). For VaR, we have that:

P[Ra < —VaR,] =1—«

and
Ra—a —VaR, —a
P 5 b 1—uw
—VaR. —
% =511 —a) = —t;1(a) =t —tinvy(a).
Now we can separate VaR,
VaR, = —a + b - tinv,(a), (2.17)

we can write it as
v—2
VEIRD( = —m-+s- \/T . tznvv([x)/ (218)
where

ty(a,b) - generalised t-distribution with v degrees of freedom and parameters(a, b),
m - selective mean value,

s - selective standard deviation,

tinv,(«) - inverse distribution function of t-distribution.

VaR calculation for Log-normal distribution

Now suppose that the value of the portfolio has the log-normal distribution (see Ap-
pendix A.3), i.e. we suppose that the Rg, logarithmic rate of return (2.9), has the normal
distribution with parameters pirg, Org, i.e. Rg ~ N(pigg, aﬁg). Let Rg.it be the value of Rg,
which separate(1 — «)% of the worst rates from the rest of the possible rates. It satisfies:

P[Rg < Rgiit]) =1 —u

and

12



Rg — MRg < Rgcrit — MRy

p =1—-u
SRg SRg
R o —
S8t ZTRS _ p-1(1— ) = —¢py () = —z(a)

Rgcrit = MRg — SRg * Za-

Now we can write VaR,
VaRy; = —1(Pi—1 - exp(Rgerit) — Pr—1) (2.19)

itis
VaRyt = Pi—1(1 — exp(Rgeit)), (2.20)
where
VaRy - VaR, calculated in day t — 1,
P;_4 - value of portfolio in the time t — 1 - current value of the portfolio,
N (prg, 0rg) - normal distribution with parameters prg, 0rg,
MRy - selective mean value of logarithmic rates,
SRy - selective standard deviation of logarithmic rates,
®~!(a) = z, - inverse distribution function of normal distribution.

The assumption of portfolio to have the log-normal distribution and the derivation
of VaR is consistent with the theory that value of the portfolio follows the geometric
Brownian motion (see Appendix 5).

Py = exp(ut + ow;)
P
Rgt =1In <Pt) = u+o(w —wi_q) ~ Norm(u,0?),

t—1
where
P; - value of the portfolio in time ¢,
Rg - logarithmic rate of return,
Norm(p, o) - normal distribution with parameters y, o,
wy - Wiener process (see Appendix 5), satisfying: w; — ws ~ Norm(0,t — s).

Position approach - Multivariate distribution

Calculation position approach is harder then portfolio approach. There are technical
demands on collection, saving and calculation. We will not demonstrate the calculation
in this work.

More about this methods you can read in [10].

Advantages and Disadvantages

The advantage is that VaR estimation with parametric methods could be more accu-
rate, the accuracy is limited by distribution parameters. The disadvantage is that it may
be difficult to estimate the right distribution and parameters of our risk factors.

2.3.3 Monte Carlo simulation method

We will talk about this method in details in the next chapter. Now only a short de-

scription of this method. [15] Chapter 3, Page 43.

13



This method has a lot of in common with the historical simulation method, but the one
big difference is that historical simulation use the normal distribution. On the opposite
Monte Carlo simulation uses for selected market factors such a statistical distribution
that can best affect change in market factors. It is not determined that it will be a normal
distribution as in the case of historical simulation. Selection of an adequate statistical
distribution is on the financial managers of the company.

After selecting the statistical distribution we generate thousands hypothetical changes
in market factors using the pseudo-random numbers generator. Subsequently, we con-
struct hypothetical profits and losses of the portfolio. The maximum expected loss is then
determined from the distribution of profits and portfolio losses for the desired confidence
level.

Advantages and Disadvantages

The advantage is lots of data in the simulation. You can use various distribution
assumptions. The disadvantage is that it may take a lot of computational power (and
hence a longer time to estimate results).

2.3.4 Comparison of methods

There is a question which of these approaches or methods is the best for calculating
Value at Risk. Unfortunately there is no easy answer. The various methods differ in com-
plex risk measurement capabilities of market factors, in difficulty of implementation, in
ways of explanation to the management, flexibility in analysing the effect of changes in
the assumptions and reliability of the results.

The choice of method depends on the parameters which the risk manager consid-
ers more important. The simplest method to determine the maximum expected loss is a
historical simulation. This method is also simple to implement and easily understood by
managers. On the other hand, we have to know the time series of relevant market factors.
If these series are atypical for a given number of factors, the result is relatively inaccurate.

Parametric approach to calculating VaR is used at the academy rather than in practice.
With added value, that lies in a parametric distribution, that we assume to be correct, the
estimate of VaR with parametric method is more accurate. Of course, the accuracy is lim-
ited by the distribution parameters.

The highest demands on the initial assumptions has analytical method. However the
assumption of normal distribution for the individual factors in a portfolio cannot be ac-
cepted, especially at longer time intervals.

As for the accuracy of the result, the best method seems to be the Monte Carlo method.
The advantage flexibility is particularly large. However, its use may be time consuming
and it requires some knowledge and experience of the creators and users.[15]

MC simulation and historical simulation both these methods based on simulations
suffer when using a lower number of scenarios by bad convergence to the actual sam-
ple quantile. While Monte Carlo method is generating larger number of scenarios,and
the limits are given by the computational resources available, the historical simulation
method exhibits a more serious problem - a long time series are often not available and
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Table 2.2: Comparison of Value at risk methodologies

H Historical simulation

Parametric methods

MC simulation

Able to measure

the risk of port-
folios which in-
clude options?

portfolio

Yes, regardless of the
options content of the

Yes, but is better for a
short time period and
small content options

Yes, regardless of the
options content of the
portfolio

Easy to imple-

ment?

data of market factors

Yes, for portfolios with
the available historical

Yes, for portfolios
that wuse only the
tools of current soft-
ware.Simply - medium,
according to the com-
plexity of software
tools and data

Yes, for portfolios
that use only the
tools of current soft-
ware.Simply - medium,
according to the com-
plexity of software
tools and data

Easy to explain || Yes No No

to management?

Computation Yes Relatively yes Relatively yes
performed

quickly?

VaR values are || Yes Yes, except the case Yes, except the case

misleading if the
recent history is
atypical?

when alternative pa-
rameters estimation are
used

VaR can not be estimated, especially at higher levels of probability.

when alternative pa-
rameters estimation are
used

There are some ways to improve the convergence of these two methods(e.g. using

pseudohistorical scenarios), see for example [

I

Comparison of three methods mentioned above is summarized in Table 2.2. Table with

more criterion can be found in [

], Page 38.
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Advantages and Disadvantages of VaR

Advantages

VaR is easy to understand - VaR is measured in price units (Dollars, Euros) or as
a percentage of portfolio value. This makes VaR very easy to interpret and also to
further use in analyses.

Comparing VaR of different assets and portfolios - We can measure and compare
VaR of different types of assets and various portfolios (stocks, bonds, currencies,
derivatives, or any other assets with price).

VaR is often available in financial software - VaR is a frequent part of various
types of financial software.

Everybody else uses VaR - When competitors use it, clients require it, and regula-
tors recommend it.

Disadvantages °

VaR can be misleading - Many people think of VaR as “the most I can lose”, espe-
cially when it is calculated with the confidence parameter set to 99%. In reality 99%
is very far from 100% and here is the place where the incomplete understanding of
VaR can be fatal.

VaR gets difficult to calculate with large portfolios - When you are calculating
VaR of a portfolio, we need to measure or estimate not only the return of individual
assets, but also the correlations between them. With growing number and diversity
of positions in the portfolio, the difficulty of this task grows exponentially.

VaR is not additive - Correlations between individual risk factors enter the VaR
calculation is also the reason why VaR is not simply additive. The portfolio VaR
containing assets A and B does not equal to the sum of asset A VaR and asset B
VaR.

The resulting VaR is only as good as the inputs - Using unrealistic return distri-
butions as inputs can lead to underestimating the real risk with VaR.

Different VaR methods lead to different results - Different approaches (Historical
simulation, Analytical simulation, MC simulation,..) can also lead to very different
results with the same portfolio, so the representativeness of VaR can be questioned.

212th April, 2012. http:/ /www.macroption.com/value-at-risk-var-advantages/
312th April, 2012. http:/ /www.macroption.com/value-at-risk-var-limitations-disadvantages/
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Chapter 3

Monte Carlo method (MC)

In this chapter we follow the book written by Fotr and Hnilica [18], Chapters 2,3.
At first we have to say something about sensitivity analysis, which will be useful later in
the MC simulation.

3.1 Sensitivity analysis

The goal of sensitivity analysis in financial management is detection of the companies
or projects sensitivity selected financial criterion on possible risk factors value changes.
It means that we have to determine, how certain changes (e.g. volume of production,
utilization of production capacity, size of the investment costs,...) influence the given
criterion.

The basic form of sensitivity analysis is the single factor analysis, where we can see
the effects of isolated changes on the chosen criterion in individual risk factors. In this
case all other factors stay on their anticipated (planned, most likely) values.

Changes of individual risk factors values then may have the following character:

e Pessimistic or Optimistic values,
e Deviation from planned (most likely) values of the certain size (e.g. £10).
We can divide risk factors into:

e Little importance - risk factors whose changes (of character referred above) pro-
duce only slightly change in the selected criterion.

e Significant - factors whose changes cause a significant change in the selected crite-
rion. The criterion is very sensitive to changes in these factors.
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3.1.1 Example

In this example we want to assess the significance of risk factors which influence profit
(profit before tax) of a new project.

Following Example 2.1 from [18], Chapter 2, Pages 32-35, we use for demonstration the
sensitivity analysis.

Annual profit before tax is difference between revenues and total costs. Manufactured
product is designed to markets in a EU country. Size of revenues is product of annual
sales in terms of volume (sales prices in Euro and exchange rate of Crown against Euro).

Costs represent sum of variable and fixed costs for a period.

Variable costs value of material consumption on annual production. Product of annual
production, standards of material consumption and the purchase price.

Fixed costs are mostly overhead costs.

Annual profit from the production of a new product is
P=S-SP-ER—(S-C-MP+FN), (3.1)
where

P - profit before tax (CZK/year),

S - sales, (production - amount of stocks is still on the same level, sales volume is the
same as the size of production) (pc/year),

SP - sales price of product (Euro/pc),

ER - exchange rate CZK against Euro (CZK/Euro),

C - standard of material consumption per unit of production (kg/pc),

MP - material price (CZK/kg),

FN- fixed costs (mill. CZK/year).

We assume that the planned values of all six factors are effected by uncertainties. To
assess the benefits and risks of the project in addition to the planned values will be pro-
cessed in two scenarios, the optimistic one (positive development of factors) and the
pessimistic(negative development of factors).

All the values and analysis process summarize the following Table 3.1 from Excel,
which is optimal to calculating this analysis. The original file can be found on the at-
tached CD.

18



Table 3.1: Sensitivity analysis

Sensitivity Analysis

Risk factor Unit Pessimistic Most likely Optimistic
S Sales - [pcfyear) 1000 75 100 120
SP Selling price - {Eurofpc) 135 150 160
ER  |Exchange rate - (CZK/Euro) 22 24 25
MP  |Material price - {CZK/kg) 46 40 36
FC  |Fixed costs - [CZK{year) 1 000 000 85 75 70
C Standard of material consumption - (kgfpc) G2 G0 o]
Profit -76 150 000 45 000 000 159 440 000

Now we will show how sensitive is profit on individual risk factors value changes by isolated transition of each factor from the value of
most likely scenario to the value of pessimistic scenario. We have to do six calculations. Always one factor will be changed and the rest
stay at the most likely scenario.

e.q. : Decline of sales from 100 000 pc/year to 75 000 pciyear, other factors will be not changed. So we have now the annual profit 15 000
000 CZK, it is absolute decline is 30 000 000 CZK. The relative decline will be 30 000 000/45 000 000 x 100 = 66,7 "%.

Factor value Decline of profit
Risk factor Unit Most likely Pessimistic Profit A (CZK) R (%)

S sales - [pcfyear) 1000 100 7a 15000000 30000 000 66,67

SP selling price - [Eura/pc) 150 135 9000 000y 36 000 000 50,00

ER  |Exchange rate - (CZK/Euro) 24 22 150000001 30000000 65 67

MP  |Material price - [CZK/kg) 40 46 9000000 36000000 50,00

FC  |Fixed costs - [CZK/year) 1000 000 7a g5 35000000 10000 000 2222

C Standard of material consumption - [kgfpc) G0 52 37 000 000 5 000 000 17,78
A Absolute decline in annual profit
R Relative decline in annual profit

We can see that the annual profit responds most sensitively on decline of selling price from 150 Euro/pc to 135 Euro/pc and on increase of
purchase price of materials from 40 CZK/kg to 46 CZK/kg. These two factors are the most important risk factors of the project. Quite

significant is standard of material consumption (profit decline of 17,8%).

significant are demand and exchange rate (profit decline of 66,7%). Less significant are fixed costs (profit decline of 22,22%). The least

The second table illustrate profit sensitivity on negative factors development which influence profit from new preduct production.
This project is very risky. That is obvious also from the first table where we can see that the calculation of profit with pessimistic scenario.
In this case is project is very loss, the loss will reach up the 76 150 000 CZK.

Advantage of that sensitivity analysis form is that it respects different uncertainty

amount of factors that effect the chosen financial criterion for the project.

Disadvantage is that we can use this type only if the pessimistic scenario was created.

And the ambiguity of understanding the pessimistic (optimistic) scenario.

In practise financial managers often use a sensitivity analysis based on investigating

the impact of certain percentage changes in risk factors (usually +10% ).
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3.2 Technique of Monte Carlo simulation

We will follow the book [18], Chapter 3, Pages 71,72. We can divided the technique of the
simulation into the following steps:

e Creating mathematical model of the project - and his processing e.g. in MS Excel.
The model has usually the form of profit and loss statements, balance sheets, cash
flow and the formulas for calculating individual criterion of project.

e Determine of key risk factors - input variables of model, which significantly af-
fect the uncertainty of simulation inputs in form of financial criterion. It means the
uncertainty of these factors will be respected in the simulation. Other inputs vari-
ables will be constants in the form of their most likely values. The useful tool to
determine key factors is sensitivity analysis.

e Determine of probability distribution of key risk factors - this is generally com-
plex task. By discrete risk factors has a distribution spreadsheet form. By contin-
uous risk factors is selected a certain type of distribution and it’s parameters are
entered. It is possible to use historical data or experts experiences.

e Determine of statistical dependence of key factors - value of some risk factors
may depend on other factors. In the simulation we can not generate these factors
independently, but their dependence has to be respected.

e Process of simulation with using computer program - consists of a large number of
steps which are repeated until the end of the simulation. In each step the program
generates values of risk factors on their probability distribution and calculates the
model of risk analysis object. User gets results in graphic or numerical form.

We will show the whole simulation on the example.

3.3 [Example

The Example 3.6 [18], Chapter 3, Page 73 we will study for the MC simulation.

The task is to process risk analysis of investment project using MC simulation. Project is
about production a new product. Profit before tax is affected by six factors. Each factor is
loaded by some uncertainty. We consider three scenarios for evaluating the benefits and
risks of this project:

e most likely scenario (basic) - based on assumptions,
e optimistic scenario - very positive development of risk factors,

e pessimistic scenario - opposite of optimistic scenario, very negative development
of risk factors.

Their values are shown in Table 3.2.
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Table 3.2: Risk factor values scenarios

Risk factor Unit Pessimistic Maost likely Optimistic
S sales - (pcfyear) 1000 75 100 120
SP selling price - (Euro/pc) 135 180 160
ER Exchange rate - [CZK/Euro) 22 24 25
Mp Material price - (CZKfkg) 46 40 36
FC Fixed costs - [CZK/year) 1000 000 85 75 70
C standard of material consumption - {kgfpc) 60 60 60
Profit -68 250 000 45 000 000 150 200 000

Now we will follow the steps from the beginning of this chapter.

3.3.1 Creating mathematical model of the project

We assume that the chosen financial criterion of the project is annual profit before tax,
then our model of this project is rather simple. We have four relations:

e Annual revenues calculation (R) - from sales of the new product we set
R=S-SP-ER, (3.2)

where

S is the sale volume,

SP is the product selling price,

ER is the exchange rate (CZK/Euro).

e Variable costs calculation (VN) - we set
VC=S-C-MP, (3.3)

where

S is the annual sale (we assume not manufactured in inventory, that means the size
of sales expresses production volume),

C is the standard of material consumption,

MP is the material price.

e Total costs calculation (N) - we set as
TC = VC + FC, (3.4)

where
VC are variable costs,
FC are fixed costs (we work with them as one item ).

o Profit before tax calculation (Z) - finally we can set

P=R-TC. (3.5)

Based on these four relation we can create simple program in MS Excel Table 3.3, which
will calculate revenues, variable costs, total costs and profit before tax with dependence
on six influencing parameters.
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Table 3.3: Production of new product

Production of a new product

Input variables

Parameter Unit Most likely scenario
S sales - (pcfyear) 1000 100
SP selling price - [Euro/pc) 1560
ER Exchange rate - ({CZK/Euro) 24
MP  |Material price - [CZKfkg) 40
FC Fixed costs - [CZKfyear) 1 000 000 s
C standard of material consumption - (kgfpc) B0

Output variables

R Revenues {CZK) 360 000 a00
VC  |Variable costs {CZK) 240 000 ooa
TC Total costs (CZK) 315 000 000

P Profit before tax (CZK) 45 000 000

The created Table 3.3 has two parts:

There are input variables of the model - which correspond to the most likely scenario
from Table 3.2 .

Second part contains output variables of the model - we can see that annual revenues
are with this scenario CZK 360 M., total costs are CZK 315 M. and profit before tax is
CZK 45 M.



3.3.2 Key risk factors determination

To determine the key factors (which uncertainty will be accepted in the simulation)
we can use results of sensitivity analysis, which we created in the section 3.1 - Sensitivity
Analysis.

Example of sensitivity analysis shows that first five factors are significant. Their un-
certainty should be respected in the simulation. The least significant factor is standard
of material consumption, that’s why we can set this factor as a constant on the level his
most likely value.

So, we receive a new Table 3.4 with parameters.

Table 3.4: Determine of key risk factors

Determine of key risk factors

Risk factor Unit Pessimistic | Most likely | Optimistic
S sales - [pcfyear) 1000 =] 100 120
SP selling price - (Eura/pe) 135 150 160
ER Exchange rate - (CZK/Eura) 22 24 25
MP  |Material price - [CZKfkg) 45 40 36
FC Fixed costs - (CZK/year) 1 000 000 85 75 70
C standard of material consumption - (kg/pc) 60 60 60

3.3.3 Key factors probability distribution determination

We will use a triangular distribution [5] for displaying individual risk factors proba-
bility distribution.
For the key uncertainty variable, the Monte Carlo simulation defines the possible values
with a probability distribution. The type of distribution is based on the conditions sur-
rounding the variable. In cases, where minimum, most likely, and maximum values are
known but the relationship among those points is unknown, a triangular distribution is
most appropriate.

Triangular distribution

The user defines the minimum, most likely, and maximum values. Values around
the most likely are more likely to occur. Distribution can be either symmetric (the most
probable value = mean = median) or asymmetrical. Variables that could be described by
a triangular distribution include past sales history per unit of time and inventory levels.
More about the triangular distribution can be found in Appendix 5.

We can see the distribution of our key factors in the Figure 3.1.
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Some frequently used probability distributions !

¢ Normal/Gaussian distribution - Continuous distribution is applied in situations
where the mean and the standard deviation are given and the values in the middle
near the mean represent the most probable values of the variable. It is symmetric
around the mean and is not bounded. (Examples of variables described by normal
distributions include inflation rates and energy prices.)

¢ Log-normal Distribution - Continuous distribution is specified by mean and stan-
dard deviation. This is appropriate for a variable ranging from zero to infinity,
with positive skewness and with normally distributed natural logarithm. Values
are not symmetric like a normal distribution. (Examples of variables described by
log-normal distributions include real estate property values, stock prices, and oil
reserves.)

e Uniform Distribution - Continuous distribution is bounded by known minimum
and maximum values. In contrast to the triangular distribution, the probability of
occurrence the values between the minimum and maximum is the same. (Exam-
ples of variables that could be uniformly distributed include manufacturing costs
or future sales revenues for a new product.)

e Exponential Distribution - Continuous distribution used to illustrate the time be-
tween independent occurrences, provided the rate of occurrences is known.

More can be found in [19].

3.3.4 Determination of statistical dependence of key factors

In this very simple example we will omit dependences. If you want to know some-
thing about this problematic you can find it in: Aplikovand analyjza rizika ve financnim man-
agementu a investicnim rozhodovdni, [iti Hnilica, [iti Fotr, Chapter 7.

13th November 2012. http:/ /www.investopedia.com /articles/07/monte_carlo_intro.asp#axzz2Bdsl6C27
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3.3.5 Simulation process with using computer support

For the simulation we will use program MATLAB 7.1. For easy processing results is
very useful to link Matlab with MS Excel with using tool Excel Link. Short instruction
how to do it can be found in Appendix 5.

Before we start the simulation we will create a file with input data in Excel. We will
use this file for all our simulations. An example file is shown in following Table [3.5].

Table 3.5: MS Excel - Input file

Input file

Risk factor Unit Pessimistic Mast likely Optimistic
S Sales - [pc/year) 1000 75 100 120 75 100 120
SP Selling price - [Euro/pc) 125 150 160 125 150 160
ER Exchange rate - (CZK/Euro) 22 24 25 22 24 25
MP  [Material price - [CZK/kg) 46 40 36 36 40 46
FC Fixed costs - [CZK/year) 000 000 85 75 70 70 75 85
C Standard of material consumption - (kg/pc) 60 60 60

We can see data for Matlab in the small yellow table on the right. These data are
sorted from smallest to largest and will be put into the Matlab with using a command
xlsread(’fileName’,’sheet’,'range’). The variable range will be in our case H5:J9.
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Chapter 4

Simulation experiments

In this chapter we will show various simulations. We will watch influence on the
simulation accuracy, what is the best simulation technique. We follow the book written
by D. Vose [20] and also the book by Fotr, Hnilica [18], Chapter 3.

At the beginning, we have to clarify several terms:

Simulation Experiment - often also called only " simulation " - not to be confused with
one particular simulation. Experiments can consist of 100-1 000 simulations.

Simulation -one particular sample contained in the simulation experiment. Simulation
can be also called as one iteration in the simulation experiment.

Scenario - generally represents specific images or descriptions of the future, composed
of elements and their links within the file. The goal of scenarios is to provide a structured
view on the neighbourhood development, in which the company is located.

In practise, we can meet two basic types of scenarios:

¢ Qualitative - are long term oriented (5 to 10, eventually 20). These have usually
verbal description. By creation these scenarios are used by external workers and
consultants. These scenarios are not used as a support in making decisions under
risk or uncertainty. They are rather used to generate new strategic ideas.They have
to extended the circle of managers thought (change their corporate stereotypes and
isolation).

¢ Quantitative - are generally short-term nature. By creation, these scenarios apply
analytical and data-based techniques. They put the emphasis to the internal spe-
cialists. These scenarios are often used for determining the impact of risk decisions
(e.g. investment projects ) for each scenario, evaluation and selection.

More interesting reading about scenarios [15], Chapter 3, Section 3.2.
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4.1 Accuracy

We will study how the number of scenarios affect the simulation accuracy in the first
type of simulation experiment.

We will show three simulations experiments with different parameters alpha (0.95,
0.99, 0.995). For all of them we will use the same number of simulations and we will
change the number of scenarios.

As we already mentioned in Section 3.3.5, we will use the program MATLAB 7.1 and
the results will be processed in MS Excel by using the Excel Link tool (instruction in Ap-
pendix 5).

We start with data loading from prepared Excel file 3.5. Then, we define all variables.
Number of simulations will be 1000 in one simulation experiment. Number of scenarios
will be changed (10 000, 100 000, 1 000 000), for all values of parameter alpha.

Now we look at the main body of the source code, see Listing 4.1. First, we start time
tracing. Second, we perform m simulations. Each simulation has n scenarios. In each
scenario we generate 5 numbers from interval [0,1].

We calculate values of each key factors for each of this 5 numbers.

Given a random variate U drawn from the uniform distribution in the interval (0, 1),
then the variate

(4.1)

X=a+ Ul —a)(c—a) for0 < U < F(c),
X=b—/(1A-U)(b—a)(b—c) forF(c)<U<1.

More information about generating triangular-distributed random variates can be found
in Appendix 5.

Table 4.1: Factors

: A | B | ¢ [ o [ E | F | & [ H | |
2

3 1 2 3 1 2 3

4 1 75 100 120 1 i1 j2 i3

5 2 135 150 160 2 i1 j2 i3

B 3 22 24 25 3 i iz i3

7 1 36 40 46 1 i iz i3

8 5 70 75 85 5 K i K

5

Formula (4.1) for factors from Table 4.1 is implemented in the source code 4.1, on lines
40-42. With using this formula and Table of factors 4.1 we can appoint to formula in the
source code, line 40.

After this calculation, we compute the resulting profit in each scenario. Subsequently,
we calculate Value at Risk for different value of parameter alpha for each simulation.
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33

34

35

36

37

40

41

With this procedure we get 1000 values of Value at Risk for each parameter alpha.
In the rest of the source code, we calculate averages and standard deviations for all val-
ues of alpha and in the end we plot graphs of normal distribution.

The whole source code of described procedure follows.

Listing 4.1: Computation of VaR

clear

%load input data from excel file
data=xlsread(’ input_data.xls’,’MC’,"H5:J9");

% DEFINITION OF VARIABLES

% number of scenarios (10 000, 100 000, 1 000 000)
n=10000;

% number of simulations

m=1000;

% standard of material consumption (fixed factor)
=60;

]

alphal= 0.95;

alpha2= 0.99;

alpha3= 0.995;

% an auxiliary matrix, (to speed up the calculation)
profit=zeros(n,1l);

% an auxiliary matrix, (to speed up the calculation)
x=zeros (5,1);

% an auxiliary matrix, (to speed up the calculation)
VaR=zeros (m, 1) ;

% MAIN BODY
% starts to trace time
tic

for k = 1:m

for i=1l:n

% generetes 5 random numbers from intevral [0, 1]
u=rand(5,1);

% calculates the corresponding values of each
variable in the given scenario
for j=1:5
if u(j)<=(data(j,2)-data(j, 1))/ (data(]j,3)-data (]
1))
x (j)=data(j,1l)+sgrt(u(j)~(data(j,2)-data(j, 1)) *(
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42

44

45

46

48

49

50

51

60

61

62

63

64

data(j,3)-data(3j,1)));
else x(j)=data(j,3)-sgrt ((1l-u(j))~(data(j,3) -
data(j, 1)) (data(j,3)-data(3j,2)));
end
end
% calculates the resulting profit in the given scenario
profit (1)=x(1)*1000*x(2) *x(3)—(x(1)*1000*s*x(4)+tx(5)
*1000000) ;
end

VaR1l (k,1)=—-quantile(profit,l-alphal); % VaR value - 0.95
VaR2 (k,l)=-quantile (profit,l-alpha2); % VaR value - 0.99
VaR3 (k, 1)=—-quantile (profit,l1-alpha3); % VaR value - 0.995
end

averagel=mean (VaRl) ;
standard_deviationl=std(VaRl) ;

average2=mean (VaR2) ;
standard_deviation2=std (VaR2) ;

average3=mean (VaR3) ;
standard_deviation3=std(VaR3);

$GRAPHS
figure (1)

subplot (3,1,1)

% a histogram with a specified number of classes
hist (VaR1l)

ylabel ("VaR’");

title('Histogram’,’ fontsize’,12)

subplot (3,1, 2)

% a normal probability plot

normplot (VaR1)

subplot (3,1, 3)

% empirical distribution function
cdfplot (VaR1l)

figure (2)

subplot (3,1,1)

% a histogram with a specified number of classes
hist (VaR2)
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ss |ylabel (" VaR’);

g |title ('Histogram’,’ fontsize’,12)
90 |subplot (3,1,2)

91 |$ a normal probability plot

9 |normplot (VaR2)

93 |subplot (3,1, 3)

94 |%$ empirical distribution function
o5 |cdfplot (VaR2)

96

o7 | £figure (3)

9 |subplot(3,1,1)

0w |%$ a histogram with a specified number of classes
101 |hist (VaR3)

102 |ylabel ("VaR");

13 |[title (Histogram’,’ fontsize’,12)

04 | subplot (3,1,2)

15 |$ a normal probability plot

106 |normplot (VaR3)

107 |subplot (3,1, 3)

08 | % empirical distribution function

109 |cdfplot (VaR3)

110
111
12 |%$ end of time tracing

113 |[time = toc;

31



Results

In the first simulation experiment we used 10 000 scenarios. Results can be seen in Table
4.2. Time of experiment is about 40 seconds, which is negligible. We can also see that the
average and standard deviation increase with increasing alpha. In Figure 4.1 we can see
how the VaR is close to normal distribution.

In the second experiment we set 100 000 scenarios.

We can see in Table 4.3 that the experiment time is now about 7 minutes. Average and
standard deviation is again increasing with increasing alpha. Contrary to the Simulation
1 the standard deviation is lower. We can see how the VaR is close to normal distribution
in Figure 4.2.

In the third simulation experiment we set 1 000 000 scenarios.

In Table 4.4 the time is almost 1 hour. Average and standard deviation is again increas-
ing with increasing alpha. In this case, the standard deviation is much lower than in the
previous two cases. It is even in the order of tens of thousands. Figure 4.3 shows how the
VaR is close to normal distribution.
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1 - Results
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Figure 4.1: Graphs 1 - alpha= 95%, 99%, 995%
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Figure 4.3: Graphs 3 - alpha= 95%, 99%, 995%

38



4.2 Simulation time

We will look closer to the simulation time in the second type of simulation experi-
ment. We will examine which procedure is better for computing Value at Risk. Again we
will show three simulation experiments with different parameter alpha (0.95, 0.99, 0.995).

The source code will be very similar to the source code 4.1.

We start with data loading from the prepared input Excel file - Table 3.5. After that
we define variables. Number of simulations will be constant (1 000) for simulation ex-
periment. Number of scenarios will be changed (1 000, 10 000, 100 000), for all values
of parameter alpha. This source code will differ in the main body. For n scenarios we
will generate 5 numbers from the interval [0,1], similar like in simulation experiment 4.1
we compute the values of individual factors and subsequently we compute the resulting
profit in each scenario.

Now the source code starts to differ from the previous code 4.1. We will calculate the
value of VaR in the cycle, where variable r is equal to 10. Thus we get 10 values of VaR
from which we want to calculate the resulting value of VaR for all m simulations.

On the following pages you can see the whole source code 4.2.

39



36

37

38

39

40

41

42

43

44

46

clear

Listing 4.2: Computation of VaR with repetition

%load input data from excel file
data=xlsread(’input_data.xls’,’'MC’,"H5:J9");

% DEFINITION OF VARIABLES

o

n=10000;

% number of simulations

m=1000;

% standard of material consumption

)
Il

60;

% number of repetitions

-

=10;

alphal=0.95;
alpha2=0.99;
alpha3=0.995;

[}

% an auxiliary
profit=zeros(n,

[}

% an auxiliary
x=zeros (5,1);

[}

% an auxiliary
VaR=zeros (m, 1) ;

[}

% an auxiliary

matrix, (to speed up the
1)
matrix, (to speed up the

matrix, (to speed up the

matrix, (to speed up the

VaR_result=zeros(r,1);

\

% MAIN BODY

% starts to trace time

pa

ic
for k =1

tm

for 1=1:r

for i=1l:n

o

o

u=

generetes 5 random numbers from intevral

rand(5,1);

% calculates the corresponding values of each

% number of scenarios (1 000, 10 000, 100 000)

(fixed factor)

calculation)

calculation)

calculation)

calculation)

variable in the given scenario

for 3=1:5

if u(j)<=(data(j,2)-data(j, 1))/ (data(3,3)-

data(j, 1))

x(j)=data(j, 1) +sqgrt(u(j) *(data(j,2)-data(]j

40
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+ 1)) (data(3j,3)-data(j,1)));
47 else x(j)=data(j,3)-sgrt ((1l-u(j)) = (data (]
,3)-data(j, 1))« (data(j,3)-data(3j, 2)));

48 end

n end

50 % calculates the resulting profit in the given
scenario

51 profit (1)=x(1)*1000%x(2) *x(3)—(x(1)*1000*s*x(4) tx
(5)%1000000) ;

52 end

54 VaR1l (1,1)=-quantile(profit,l-alphal);

55 VaR2 (1, 1)=-quantile (profit, l-alpha2);

56 VaR3(1l,1)=-quantile (profit, 1-alpha3);

57

58 end

59
60 VaR_resultl (k, 1) =mean (VaR1l) ; % VaR value - 0.95

61 VaR_result2 (k, 1l)=mean (VaR2); % VaR value - 0.99

62 VaR_result3(k, 1l)=mean (VaR3) ; % VaR value - 0.995
63 end

64
65 |% end of time tracing
6 |time = toc;
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Results

In the first simulation experiment, we used 1 000 scenarios with 10 repetitions and we
compare it to 10 000 scenarios without repetition. We can see in Table 4.5 that the simula-
tion time is grater for simulation experiment with repetition. In computing the average,
there is a larger part of the demands on computer memory. In this case, the difference
between both procedures is very small (5.477 sec).

In the second simulation experiment, we used 10 000 scenarios with 10 repetitions and
we compare it with 100 000 scenarios without repetition. We can see in Table 4.6 that in
this case it is faster to calculate Value at Risk with repetition. The difference between both
methods is again negligible (6.362 sec).

In the third simulation experiment, we used 100 000 scenarios with 10 repetitions and
we compare it with 1 000 000 scenarios without repetition. We can see in Table 4.7 that
the method of computing VaR with repetition is again faster like in previous case. Now
the difference is grater (1.394 min).

From these experiments, we can conclude that with growing number of scenarios the

time difference will be greater. Therefore, for large data sets we recommend to use the
method with repetition.
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4.3 Number of simulations in experiment

In this experiment, we show how to determine the number of simulations n which
we need to run to get some specified level of accuracy.

In the [20], Section 7.3.4 Vose solves the question: How many simulations runs are
needed?
The problem is that for one model trying to determine a mean, 500 simulations may be
good enough. For another trying to determine a 95th percentile, 100 0000 simulations
might be needed. It depends on sensitivity to outputs accuracy of the question decision.

Estimate the number of simulations to run to get sufficient accuracy for the mean

We will follow the Section 7.3.4 in Vose [20].
Monte Carlo simulation estimates the true mean y of the output distribution such that:

s (1N &
y_(Yl)iZox”

where
x; are generating values,
n is number of simulations.

If we used Monte Carlo sampling, each x; is an iid (independent identically distributed
random variable). Then following the central limit theorem we can say that the distribu-
tion of the true mean is given by

o
i~ N r =
' <” Vi )
where ¢ is the true standard deviation of the models output.
Using the pivotal method, we can rearrange this equation to make equation for y :

o
~N(#a—]). 4.2
oo (5,2 w
Specifying the level of confidence, we require for our mean estimation transfer into a
relationship between 6, o and n.

Formally
5:‘7@—1(1;“), 4.3)

where ®~1(-) is an inverse function of normal cumulative distribution. When we reat-
range Equation (4.3) and recognise that we want to have at least this accuracy we get a

minimum value for n 5
1
o1 < —ZHX) o
) (4.4)

6

n >

But we don’t know the standard deviation ¢ true output.
For our purposes we can estimate this by taking the standard deviation of the first few
(e.g. 50) simulations.
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We can do this by using function NORMNSINYV in Excel, which returns values of ®~!.

Estimate the number of simulations to run to get sufficient accuracy for the cumu-
lative probability F(x) associated with a particular value x

Percentiles closer to the 50th percentile of an output distribution will reach a stale
value relatively quick than percentiles toward the tails. But we often are often interested
in what happens in the tails because that is where the risks and opportunities lie.

In the following technique, Vose [20] ,Section 7.3.4 describes how to ensure that the
required level of accuracy for the percentile will be associated with a particular value.

Monte Carlo will estimate the cumulative percentile F(x) of the output distribution
associated with a value x by the determining fraction of the simulation fell at or below x.

For illustration, we provide following example:
x is actually the 80th percentile of the true output distribution. Then for Monte Carlo ex-
periment the generated value in each simulation independently has an 80% probability
of the falling below x: It means it is a binomial process with probability p = 80%. Then,
if we have n simulations and s falls at or below x, the distribution Beta(s +1,n —s+ 1)
describes the uncertainty associated with the true cumulative percentile we should asso-
ciate with x (see [20],Section 8.2.3).

When we are estimating the percentile close to the median of the distribution, or when
we are performing a large number of simulations, s and #n will both be large. We can use
a normal approximation to the beta distribution (4.5):

P(1-DP)

Beta(s+1,n—s+1)~N | P, .

(4.5)

s S
where P = " is the best-guess estimate for F(x).

We can produce a relationship similar to the Equation (4.3) for determining the number
of scenarios to get the required precision for the output mean:

_|P(1-DP) __;(1+ua
o= 2B (2> (4.6)

Rearranging Equation (4.6) and recognising that we want to have at least this accuracy
gives a minimum value for n:

—1&2
n>ﬁu—m<®lg§v (4.7)
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Table 4.8: Number of simulations

i 095 5 950
& 0,005 n 1000
)= 095
n > 7295 .772|
a 099 5 950
B 0,005 n 1000
)= 0,95
n = 12606 =04]
i 0,295 5 950
] 0,005 n 1000
)= 0,95
n = 14570 933]
i 0,299 = 950
] 0,005 n 1000
b= 095
n > 20572 376]

In Table 4.8 we summarize the estimated number of simulations n for different confidence
values alpha, fixed P = 2 =0.95 and fixed § = 0.005.

To set the VaR to be in the interval (P — 6, P + ), the smallest number of simulations (at
confidence level & = 0.95) we need is 7299.

With growing alpha, n also grows.
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Chapter 5

Conclusion

This thesis describes the Value at Risk method. It also describes computational meth-
ods of Value at Risk. We also demonstrate a computation on several examples. Above
mentioned descriptions and demonstrations are described in Chapter 2.

We compared Monte Carlo simulation, analytical method and historical simulation.
According to comparison criteria summed up in Table 2.2 we concluded that the selection
among these methods depends on given requirements of the analytical expert. At the end
of the Chapter 2 we provided advantages and disadvantages of Value at Risk method.

We also concluded that the benefit of this method is its high availability. Thus using
this method can also be beneficial for comparing the results with other companies. The
main disadvantage of the Value at Risk method is that its various computational methods
can produce different results. Which bring us back to computational method selection.

In Chapter 3 we described the Monte Carlo simulation in detail. We provide the
whole procedure of this simulation method. Which we applied in Chapter 4, where we
showed the simulation experiments.

In the first experiment we showed that standard deviation declines when the number
of scenarios grows. When the number of scenarios grows the simulation time grows as
well. Thus in the second experiment we focused on the simulation time and we compared
two computational methods of Value at Risk.

We conclude that for high number of scenarios it is better to use the method with
repetitions, described in the Section 4.2. We consider values higher than approximately
100 000 scenarios as a high number. In the last simulation experiment we showed the
minimal number of simulations needed for the experiment.

As a further extension of this work, we can devote a description and the subsequent
comparison of other methods to calculate Value at Risk. E.g. the Conditional Autoregres-
sive Value at Risk (CAVaR). It is an alternative semiparametric method to estimate Value
at Risk. This model pays attention directly to the quantile. The approach is based on the
simple intuition that it is better to model directly the quantile as it evolves through time
instead of attempting to model and estimate the entire distribution of portfolio returns.
More about this topic can be found in [21] written by F. Engle and S. Manganelli who
introduced the the Conditional Autoregressive Value at Risk model in 1999 or in [22] also
written by F. Engle and S. Manganelli.

Another possibility is to consider a Conditional Value at Risk (CVaR) eventually on
upper Conditional Value at Risk (CVaR™) and lower Conditional Value at Risk (CVaR ™).
CVaR™ represents expected losses strictly exceeding VaR and CVaR ™~ represents expected
losses weakly exceeding VaR. More about this topic can be found in [3].
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We can also study VaR tools that are useful for risk management, like marginal VaR,
incremental VaR and component VaR. It is possible to analyse some back testing methods
to validate the use of VaR model. About these topics we refer to [23] or [2].
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Appendix A

Distribution types

A.1 Normal distribution

The normal (or sometimes called Gaussian) distribution is a continuous probability

distribution with two parameters N(u, 02).
e 11 € R isamean

e 02 > (is a variance

The distribution with ¢ = 0 and ¢ = 1 is called the standard normal distribution.

Probability distribution function (PDF) is given by
1

1 2
P(x)=f(x;u,0) = 6_7(7),x€R.
(¥) = flin,0) = ——

Figure A.1 represents PDF for various parameters y and o>

Mormal distribution PDF

0,0¢=05
0,0?=1 |7
0, 0% =2
3,00 =1 |]
g 10

Figure A.1: Probability density function
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Cumulative distribution function (CDF) is given by

N S L) S | XK
@(x)_?[we dt—2[1+erf<@ ,X €ER, (A.2)

where erf is an error function.

For a generic normal random variable with  and ¢? > 0 will be CDF equal to

F(x;y,a):q><x;y> (A.3)

Figure A.2 represents CDF for various parameters y and o>

Mormal distribution CDF

Figure A.2: Cumulative distribution function

A.2 Student’s t-distribution

Student’s t-distribution (or just t-distribution) is a continuous probability distribution
with v degrees of freedom and we denote it t(v).
Probability distribution function (PDF) is given by

NGO

flx) = AN (1 + ;>_2, (A4)

where I' is gamma function and —co < x < o0
Figure A.3 represents PDF for various values v.
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Students t-distribution PDF

D'q' T T T T T T T T T
v =1
0as ¥v=3 |
v =5
03k v=101 |
0251 -
02r .
01aF -
01t 1
- %/ ¥
I:I 1 1 1 1 1 1 1
-5 -4 -3 -2 -1 a 1 2 3 4 ]
X
Figure A.3: Probability density function
Cumulative distribution function (CDF) is given by
1 1\ 2F l/ LH; 3; x2
F(x) = 5+l vt 13 77 ”), (A.5)
2 2 Vol (5
where 2F1; is hypergeometric function.
Certain values v give an especially simple form for calculation CDFE.
Figure A.4 represents CDF for various values v.
Students t-distribution COF
1 T T T T T T T e |
v=1 |4
09r v =3
v =5
08y =107
07 -
06} f -




Figure A.4: Cumulative distribution function
There also exist generalised t-distribution, we denote it by t,(a,b) .

ty(a,b) = a+ bt, (A.6)
Parameters (a,b) we can estimate such that
(0—2)
2 7
where m is selective mean value and s is selective standard deviation.
We will use this generalised t-distribution for this work purposes.

o= b = 55 (A7)

A.3 Log-Normal distribution

Log-normal distribution is a continuous probability distribution of a random variable
whose logarithm is normally distributed. Log-normal distribution has two parameters

e 1 € R isamean
e 02 > (is a variance
Probability distribution function (PDF) is given by

nix)— 2
L 32 e (0, +00). (A8)

flxp o) =
X0\ 27T

Figure A.5 represents PDF for various parameters y and 0>

Lag-normal distribution PDF
18 T T T T T T T T T

16

141 . 25|

12F -

1F -

o8t -

06 -

0.4r -

02F .

Figure A.5: Probability density function
Cumulative distribution function (CDF) is given by

F(x) = %erf [—Z”(;\)fz_”] x €R, (A.9)
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where erf is an error function.

For a generic normal random variable with  and ¢? > 0 will be CDF equal to

In(x) — y)

F(x;u,0) :<I><

g

Figure A.6 represents CDF for various parameters y and 0>

09

0.8

0.7

06

045

0.4
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Log-normal distribution CDF

55

L —u=0,o"=05
=0 =1
— =5
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Figure A.6: Cumulative distribution function
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Appendix B

Brownian motion

Brownian motion is the random movement of microscopic particles in a fluid (a liquid
or a gas). Explanation of Brownian motion is that the molecules in solution is due to
thermal motion constantly collide, and the direction and strength of these collisions are
random, which makes the instant position of particles random. Brownian motion speed
is proportional to the system temperature.

Geometric Brownian motion (GBM)

GBM is also known as exponential Brownian motion. It is a continuous-time stochas-
tic process in which the logarithm of the randomly varying quantity follows a Brownian
motion with drift. It is an important example of stochastic processes satisfying a stochas-
tic differential equation (SDE). It is used in mathematical finance to model stock prices in
the Black-Scholes model [24].

Stochastic differential equation (SDE)
A stochastic process S; follows a GBM if it satisfies the following stochastic differential
equation (SDE):
dSt = “I/lStdt—l-(TStth, (11)

where W; is a Brownian motion or Wiener process and u (‘the percentage drift’) and o
("the percentage volatility’) are constants.

In mathematics, Brownian motion is described by the Wiener process.

Wiener process

Wiener process is a continuous-time stochastic process named in honor of Norbert
Wiener. Often called also standard Brownian motion, after Robert Brown. It is one of
the best known Lévy processes - stochastic processes with stationary independent incre-
ments. Occurs frequently in mathematics, economics, quantitative finance and physics.
Weiner process W; is characterised by four facts:

e Wy =0,
e W; is almost surely continuous,
e W; has independent increments,

e Wy — W, ~ N(0,t—5s) for (0 <s<t),
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where N(,0?) is normal distribution [A]

The condition about independent increments means if 0 < s; < t; < s, < ¢, then
Wi — Ws1 and Wy — Wy, are independent random variables. Similar condition holds for
n increments.

More about the Brownian motion or Wiener process can be found in [14] or in [25],

[26].
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Appendix C

Triangular distribution

The triangular distribution is a continuous probability distribution with lower limit -
a, upper limit - b and mode - ¢, wherea < band a < ¢ <b.
The probability density function Figure 7 is given by

2(x —a) or
—(bz_ e —a) for x € [a,b],
f(x|abec)=Cb—a forx=c, (12)
_2b-x) for x € (¢, b],
(b—a)(b—rc)
0 for x ¢ [a, b].

\

whose cases avoid division by zeroif c=aorc=b.

Triangular distribution parameters are:
a = min{xy,X2,...,Xn}

b = max{xy,x2,...,%n}

c = mode{x1,x2,...,%,}

X

Figure 7: Probability density function
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Generating Triangular-distributed random variates

Given a random variate U drawn from the uniform distribution in the interval (0, 1),
then the variate

{X:a+\/u(b—a)(c—a) for 0 < U < F(c), 13

X=b—/A-W0B—-a)b—c) forF(c)<U<1.

Where 4, b, ¢ are the parameters of triangular distribution, defined such as:

a (lower limit): a € (—o0,00),
b (upper limit): a < b,
c(mode):a<c<b

and F(c) = (¢ —a)/(b — a) has a triangular distribution with these three parameters.
This can be obtained from the cumulative distribution function (CDF) Figure 8. !

CDF is given by:
0 forx < a,
2
(b(—xg)(z)—a) forﬂ S X S c,
F(x) = (b — x)z (14)
N <

b—a)(b—0) forc < x <b,

1 forb < x.

X

Figure 8: Cumulative distribution function

119th Nov 2012. http:/ /en.wikipedia.org/wiki/Triangular_distribution
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Appendix D

Tool for MATLAB

First open your MS Excel. In the menu top click on the item “Tools” ("Néstroje”) then
choose “Accessories” ("Dopliiky”).

B3 Microsaft Exccel - Seit1

GF] soubar Upravy Zobrack Vo Formét | Néstroje | Data  Okno  Napavida

NEEHRS S QT E &

F pravopis.

Al

5

=1z ls)]

E Arial
) zorose informadi,.  Alk-kepnut

A

B

[5

1]

“ Kontrola chyb HoT 17 0

Seffenf pracovni proster...

Seflet se3..

Sledovéni zmén »

zémek »
Spolupracs oniine v
Hledani Feert.

Sprévee scéndi.

2évislosti vzorct »
Fegitel
Wakro »
-
Dopliky

% Wofnosh automatickych opray

E)

Wlastri.

Moznosti

Analyza dat

R EREER RS =
._/

Figure 9: Instruction - partl

Now table appears. Check the check box with name Excel Link 2.3 for use with
MATLARB (here could be another name it depends on the version you have).

If you don’t have this option in your offer click on the button “Brows” ("Prochédzet”)
and look in the folder where you have installed your Matlab. There is a folder toolbox
then exlink finally choose the file excllink. Then follow the instruction above.

B3 Microsoft Excel - Segit 1

) Soubor Upravy Zobrazt Vi3t Formét Méstroje Data Okno  Napoydda

DEHRS GRIVHI 4 L@A- I 1@ = - R[] B -0 -|B 7O
Al - ~
A T8 [ ¢ [ o [E T F [ 6 [ H T T [T 0 [ K [T L T M
1 1
[2]
EN
[4 |
5 Joostiiy 2%
8 Doplitky k dispozici:
% “Analyticke nastroje = oK ]
|9 v e somo |
0 =
IEEH Nastroje pro ménu euro —I
L] [ Pritvodce podminéngm souttem (et
[12] ™ Privodee vyhledauinin
3 I editel Automatizace.
[14]
|15
|16
(17|
|18
9
H [
En Excel Link 2.3 for use with MATLAE
[22] Excel Link 2.3
737 Excel Add-In for connectivity to MATLAB
[24]
|25
|25 |

Figure 10: Instruction - part2
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After that you can see in the left top new functions.

B3 Microsoft Excel - Sedit1

) soubor Upravy Zobrsck  VioHt Eormét Méstrojs Dats  Okno  Népoveda
¥ DB-F 908 -4 5 WE g -0 - B I U

startmatlab putmatrix getmatrix evalstring

|

A T8 [T ¢ T o T ETF T e[ HT T T 7T kT L T ™|

EES

‘mlml\llmlm‘b‘m‘m =

=

<]

@

I

@

Figure 11: Instruction - part3
Now we can shortly describe new functions in MS Excel:

Strartmatlab - it runs Matlab

Putmatrix - send data to Matlab

Getmatrix - retrieve Matlab matrix

Evalstring - execute the Matlab command
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Appendix E

Description of the thesis attachment

The attached CD contains:

README .txt -
File which contains information about the CD structure.

Bachelor_Thesis.pdf -
The Bachelor thesis in PDF.

/Matlab/ -
Folder named Matlab, which contains all scripts for simulation experiments.

/MS Excel/ -
Folder named MS Excel, which contains all Excel files used in this thesis.

/Source_TeX/ -
Folder named Source_TeX, which contains LATEX files used for generating the the-
sis, all the settings, graphics and bibliography files included.
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