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Preface

The subject of this bachelor thesis is the logistic growth model and its modifications.
The thesis is divided into two parts, focusing on deterministic and stochastic models,
whereas in both cases a continuous-time or a discrete-time is considered.

The first part is focused on the deterministic logistic growth also known as logistic
equation in continuous-time, and in discrete-time it is focused on the logistic map and its
behaviour. The second part of the thesis describes stochastic population logistic growth
models using discrete-time and continuous-time Markov chains.

The aim of this thesis is to present the models mentioned above, to summarize in-
formation obtained from the different sources and to compare the growth models.

Keywords: growth model, logistic growth model, deterministic growth model, stochastic
growth model, logistic equation, logistic map, Cobweb diagram, Markov chain models,
general process of growth, Yule process
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Chapter 1

Introduction

Mathematical model is a description of a system which may help to explain the sys-
tem, make predictions about its behaviour and to study effects of different components.
Mathematical models are used mostly in the natural sciences and engineering but also in
the social sciences such as economics1.

Deterministic models are mathematical models which contains no random elements
and completely determine y if x is known, that is why they are called deterministic. Since
they are closely associated with differential equations, they began to be widely used with
their development by mathematicians such as Jakob Bernoulli, Johann Bernoulli, and
Leonhard Euler in the early 18th century to study physical processes.[8]

Stochastic models are often used to establish and represent the evolution of some
random variable over time. In general, its application started in physics and now it is
applied in engineering, life sciences, social sciences, and finance2. Although it may seem
that the processes of growth are not very important compared to birth death processes
they have great significance for investigation of epidemics, diseases, viruses and bacteria
diffusion. These processes can be also applied to population studies and their uncon-
trolled growth. It has been a problem since the late 1960s and the early 1970s where the
population of the Earth achieves four milliards (in 1830 it was one milliard, 1930 two mil-
liards, 1960 three milliards and 1975 four milliards). This problem can be found especially
in developing countries, for example in India.[4]

In Chapter 2 we focus on deterministic models. In the Section 2.1 we present logis-
tic growth (logistic equation) published by Pierre-François Verhulst in 1838 (more infor-
mation about Verhulst and his work are in Chapter 6 in book [2] written by N. Bacaër).
Detailed information about this equation and its modifications can be found in books
written by J.D. Murray [10] and by R.B. Banks [3]. In Section 2.2 we describe how it is
possible to get the discrete-time model from the continuous-time logistic equation de-
fined in the previous section. Various types of discretization and the obtained models
are described by P. Turchin in his book [14]. We obtain the well known logistic map and
describe and simulate its behaviour.

1http://en.wikipedia.org/wiki/Mathematical_model
2http://en.wikipedia.org/wiki/Stochastic_modelling_(insurance)
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1. Introduction 2

Chapter 3 in devoted to the stochastic growth models. In Section 3.1 we are deal-
ing with continuous-time Markov chain models, in particular with a general process of
growth. Basic information about Markov chain models can be found in [11] written by
Prášková and Lachout. In this section we determine the transition rate matrix which is
necessary for simulation, the stationary distribution and then we show two possibilities
how to compute absolute probabilities. Finally we simulate stochastic logistic growth
model. Simulation of the logistic growth based on the death and birth process can be
found in the bachelor thesis [6] written by Vojtěch Kulhavý. In the next section we are
dealing with the same general process of growth, only this time we consider it to be
discrete-time Markov chain model. We determine its transition matrix and simulate this
model. Information about stochastic birth and death process containing discrete-time
and continuous-time Markov chain model and more are in the article [1] written by L.J.S.
Allen and E.J. Allen.

In the last Chapter we summarize basic characteristics, advantages and disadvan-
tages of the presented models and compare stochastic and deterministic models.

The aim of this thesis is to introduce growth models mentioned above, summarize
the information obtained from the different sources and do simulations.



Chapter 2

Deterministic Growth Models

Deterministic models are mathematical models in which outcomes are precisely
determined through known relationships among states and events, without any room for
random variation. In such models, a given input will always produce the same output1.

In this chapter we use books Mathematical Biology I., An Introduction [10] written
by J.D. Murray and Complex population dynamics: a theoretical/empirical synthesis [14]
written by P. Turchin. Another used sources are lecture notes [7], [9], [12] and [13].

2.1 Continuous-time Models

Let N = N(t) be a population size (or its density) at time t. Then the rate of change

dN
dt

= births− deaths + migration, (2.1)

is a conservation equation for the population. In the simplest model there is no migration
and the birth and death terms are proportional to N. That is,

dN
dt

= bN − dN, (2.2)

where birth and death coefficients b and d are positive constants and the initial popula-
tion N(0) = N0. The solution of (2.2) is a function N(t) = N0e(b−d)t. Thus if b > d the
population grows exponentially while if b < d it dies out. Obviously this linear model is
very simple because the population growth doesn’t depend on N. (More detailed infor-
mation can be found in Section 1.1. in book [10] written by J.D. Murray.)

2.1.1 Logistic Growth

Eventually there must be some adjustment to such exponential growth. Verhulst
(1838, 1845; more in Chapter 6 in[2]) proposed that a self-limiting process should operate

1http://www.businessdictionary.com/definition/deterministic-model.html
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2. Deterministic Growth Models 2.1. Continuous-time Models 4

when a population becomes too large and suggested the following differential equation
for the population N(t) at time t:

dN
dt

= rN
(

1− N
K

)
, (2.3)

where r and K are positive constants, r is called intrinsic growth rate and K is the carrying
capacity of the environment, which is usually determined by the available sustaining re-
sources. In this model the per capita birth rate is r(1− N

K ) so it is dependent on N (see
Section 1.1. in [10]).

Let us first take a look at general properties of the logistic growth model. This
ordinary differential equation (ODE) is non-linear thus in general it is not necessarily
analytically tractable. Fortunately we can solve this simple non-linear ODE but even
without the result we can heuristically explore the behaviour of the solution as follows.

From the logistic equation (2.3) we see that dN/dt is positive when N is close to
zero but positive. This means that N is increasing at this position as time passes and
this increase continues as long as N < K. We thus expect that the population size N
approaches K upward. On the other hand, the time derivative is negative when N lies
at a position above K and N is decreasing as time advances. This time we expect N
approaches K downward. This consideration suggests that starting from any positive
initial position N(0) > 0, N will converge to K. Now we can see why K is called the
carrying capacity, it is the limit of the environment where the population in focus occurs.
Large K implies the environment can support a dense population ([13], Chapter 1).

Further we can see that there are two steady states, namely N = 0 and N = K (that
is, where dN

dt = 0). N = 0 is unstable since linearization about it (when initial population
size is positive and very small, N � 1, N2 is neglected compared with N) gives

dN
dt

= rN(1− N
K
) = rN − r

N2

K
≈ rN(t). (2.4)

This is an exponential grow and we see why r is called intrinsic growth rate, it is the rate
of increase per individual in an ideal situation. The other equilibrium N = K is stable:
linearization about it gives d(N−K)

dt ≈ −r(N − K) and so N → K as t → ∞ ([10], Section
1.1 ).

Lemma 2.1.1. Solution of (2.3) with the initial condition N(0) = N0 is

N(t) =
N0Kert

K + N0(ert − 1)
; t ≥ 0. (2.5)

Proof. We use separation of variables to determine the solution from the equation (2.3).
First we separate the variables

dN
(1− N

K )N
= rdt. (2.6)

Then we decompose the left hand side into partial fractions

dN
K− N

+
dN
N

= rdt. (2.7)
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Next we integrate both the sides and rearrange the variables∫ dN
K− N

+
∫ dN

N
= r

∫
dt

−ln|K− N|+ ln|N| = rt + c1

| N
K− N

| = c2ert.

We rearrange this again, use the initial condition N0 and finally get the solution

N(t) =
N0Kert

K + N0(ert − 1)
. (2.8)

Since the derivative of N(t) is given by

N
′
(t) =

N0Krert(K− N0)

(K + N0(ert − 1))2 , (2.9)

it can be easily verified that N(t) is the solution.

The following theorem from Section 1.1. in [7] summarize the properties of the
logistic growth model.

Proposition 2.1.2. The equation (2.3) has two steady states: N = 0 and N = K. If N is an
arbitrary solution of the equation (2.3) with N0 > 0, then

(i) • lim
t→+∞

N(t) = K,

• lim
t→+∞

N
′
(t) = 0.

(ii) If N0 ∈ (0, K), then

• N(t) ∈ (0, K), ∀t > 0,
• N

′
(t) > 0, ∀t > 0.

Moreover ∃t0 ≥ 0 such that

• N(t) ∈ (0, K
2 ), N′′(t) > 0 for t ∈ (0, t0),

• N(t) ∈ (K
2 , K), N′′(t) < 0 for t > t0.

• Specially if N0 ∈ [K
2 , K) then t0 = 0 and (0, t0) = ∅.

(iii) If N0 = K, then N(t) = K, ∀t > 0.

(iv) If N0 > K then

• N(t) > K, ∀t > 0,
• N′(t) < 0, ∀t > 0,
• N′′(t) > 0, ∀t > 0.

Proof. (i) • We simply determine the limit from the exact solution (2.5)

lim
t→∞

N(t) = lim
t→∞

N0Kert

K + N0(ert − 1)
= lim

t→∞

ert(N0K)
ert( K

ert + N0 − N0
ert )

= K. (2.10)
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• We determine the limit from the derivative (2.9)

lim
t→∞

N
′
(t) = lim

t→∞

N0Krert(K− N0)

(K− N0)2 + 2(K− N0)N0ert + N0e2rt =

= lim
t→∞

ertKN0r(K− N0)

e2rt[e−2rt(K− N0)2 + 2(K− N0)N0e−rt + N0]
= 0.

(ii) Suppose N0 ∈ (0, K).

• We can re-write it as 0 < N0 ∧ N0 < K. We multiple the first inequality by
Kert

K+N0ert−N0
(> 0) and get

0 <
N0Kert

K + N0(ert − 1)
. (2.11)

Next we can subtract N0 and add N0ert to the second inequality

N0ert < K + N0ert − N0 (2.12)

and then multiply it by K
K+N0(ert−1) (> 0). We obtain

N0Kert

K + N0(ert − 1)
< K. (2.13)

We can see that 0 < N0Kert

K+N0(ert−1) ∧
N0Kert

K+N0(ert−1) < K. We proved that if N0 ∈
(0, K), then N(t) ∈ (0, K).

• Derivative (2.9) is positive, because denominator is always positive and nu-
merator is positive because of the assumption.
• The second derivative of the exact solution (2.5) is

N
′′
(t) =

r2N0Kert(N0 − K)(N0ert + N0 − K)
(K + N0(ert − 1))3 . (2.14)

We set this second derivative to zero to find the inflection point t0. The frac-
tion is equal to zero if the numerator is equation to zero (the denominator is
positive)

r2N0Kert0(N0 − K)(N0ert0 + N0 − K) = 0. (2.15)

The equation is satisfied if

N0ert0 + N0 − K = 0. (2.16)

We can express t0 from this equation in the following form

t0 =
1
r

ln
K− N0

N0
. (2.17)

Now we determine N(t0). We substitute t0 into equation (2.5) and do some
rearrangement

N(t) =
N0Ker

ln
K−N0

N0
r

K + N0(er
ln

K−N0
N0
r − 1)

=
N0K K−N0

N0

K + N0(
K−N0

N0
− 1)

=
K(K− N0)

2(K− N0)
=

K
2

.

(2.18)
We obtain function value of the inflection point t0. Then the rest of the proof
is obvious.
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(iii) For N0 = K we have that

N(t) =
K2ert

K + K(ert − 1)
= K, ∀t > 0. (2.19)

(iv) Suppose N0 > K.

• Assume N0 = K + ε > K. Then the exact solution N(t) (see equation (2.5))
will be in the following form

(K + ε)Kert

K + (K + ε)(ert − 1)
=

K2ert + Kεert

K + Kert − K + εert − ε
= K

ert(K + ε)

ert(K + ε)− ε
(2.20)

which is always greater than K.

• Derivative (2.9) is negative, because denominator is always positive and nu-
merator is negative because of the assumption.

• From the formula (2.14) it is obvious, that if N0 > K then N
′′
(t) > 0.

In Figure 2.1 we can see how is deterministic solution changed if we have r and K
fixed and initial condition N0 is ranging from 0 to K in steps of 0.05. We can tell the solu-
tion is increasing if N0 ∈ (0, K), whereas it’s convex until it reaches value K

2 and concave
since it gets over it. It means the population growth is slowing down since its density
N(t) achieves the value K

2 .

(a) r = 0.5 (b) r = 1

Figure 2.1: Logistic population growth for parameters K = 1 and r > 0 and different
initial conditions N0.

If r = 0, then the solution N(t) ≡ N0, t ≥ 0. If r < 0, then lim
t→+∞

N(t) = 0. Both

these cases are illustrated in the Figure 2.2 below just for completeness, we cannot speak
about a growth anymore.
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(a) r = 0 (b) r = −0.5

Figure 2.2: Simulation of logistic equation for parameters K = 1 and r ≤ 0.

Also note that if N0 > K than N(t) is decreasing as time advances and it approaches
K downward (see Figure 2.3).

Figure 2.3: Simulation of logistic equation for parameters K = 1 and r = 0.5, N0 is
ranging from 0.1 to 1.7 in steps of 0.4.
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2.2 Discrete-time Models

Consider a time discretization 0 ≤ t0 < t1 < t2...; ∆tk = tk+1 − tk. For simplicity
let ∆tk ≡ 0. There are at least three ways to discretize the continuous logistic model
(equation). The first one is to discretize the derivative in the logistic model

∆N
∆t
≈ dN

dt
= rN(1− N

K
). (2.21)

Let Nk = N(tk) (we add subscript k to emphasize that we are now dealing with discrete-
time density) and let ∆Nk = Nk+1 − Nk. By replacing ∆N and ∆t in equation (2.21) we
obtain

Nk+1 − Nk = rNk(1−
Nk

K
). (2.22)

Then we adjust the equation

Nk+1 = Nk[r(1−
Nk

K
) + 1]

Nk+1 = Nk[(r + 1)− r
K

Nk]

and obtain the discrete logistic model, or better the logistic (quadratic) map

Nk+1 = aNk − bN2
k , (2.23)

where a = r + 1 and b = r
K . This model is flawed for ecological application because if Nk

happens to exceed K (1+r)
r , then at time k + 1 population density Nk+1 becomes negative

([14], Subsection 3.1.2). Nevertheless this is the most suitable model for running simula-
tions.

The second derivation uses the following trick. We divide the logistic equation by
Nk (again we add a subscript k to N)

dN
dt
Nk

= r(1− Nk

K
), (2.24)

substitute the left-hand side by the derivative of the natural logarithm (lnNt)′

(lnNk)
′ = r(1− Nk

K
) (2.25)

and replace it with Nk+1 − Nk, we receive

lnNk+1 − lnNk = r(1− Nk

K
) (2.26)

which is
Nk+1

Nk
= er(1− Nk

K
). (2.27)

Finally, we obtain the Ricker model

Nk+1 = Nker(1− Nk

K
). (2.28)
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This model avoids the flaw of the logistic map: for any Nk > 0 the model predicts a pos-
itive Nk+1 ([14], Subsection 3.1.2).

The third way to discretize the continuous logistic model uses the analytical so-
lution (2.5) of logistic equation. After rearranging the terms, substituting λ0 = er, and
switching to subscripts, as usual, we have

Nk+1 =
λ0Nk

1 + [(λ0 − 1)/k]Nk
(2.29)

([14], Subsection 3.1.2).

2.2.1 Logistic Map

We discretized the continuous logistic equation and obtained the logistic (quadratic)
map in the following form

Nk+1 = aNk − bN2
k = aNk(1−

b
a

Nk). (2.30)

To simplify this equation, we let xk =
b
a Nk. Hence,

xk+1 = µxk(1− xk), (2.31)

where µ (sometimes also denoted r) is positive constant and xt is the size of a population
at time k. This one-dimensional non-linear map is also a population model which is
capable of very interesting behaviour.

The solutions of the logistic map can exhibit surprisingly complex behaviour for
some initial conditions and particular values of parameters. This behaviour can be so
complex that it becomes impossible to predict the time evolution. Such behaviour is
often called chaotic. In our case it depends on the value of µ and there are many types of
behaviour that can occur for different values of this parameter.

Before we investigate this behaviour, we introduce the method of determining the
fixed points and their stability. The fixed point of a function is a value of xk which gets
mapped straight back to itself by the function. We can say that fixed point x∗ of the
function satisfies

x∗ = f (x∗). (2.32)

The analytic (or more precisely graphic) method of determining the fixed points and their
local stability is called cobweb diagram method or cobwebbing [9]. Now, we describe its
main principles.

Consider function f plotted on a set of axes. The x-axis represents xk while the y-
axis represents xk+1 so we obtain a phase diagram, in our case concave parabola. Then
pick some starting point x0 on the x-axis. Starting from this point, we can find the next
iterate of function, x1 = f (x0), by drawing a vertical line to the plot. Then we mark x1
on the y-axis by drawing a horizontal line from the point of intersection. In order to find
x2 = f (x1), we need to move the point x1 marked on the y-axis to the same point on
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the x-axis. We do this by drawing the line y = x and finding the intersection of this line
and the horizontal line y = x1. Then we draw a vertical line down to x-axis and mark
the point x1. Now we have a new starting point x1 on the x-axis and by repeating the
described procedure we obtain the next iteration x2 = f (x1), then we repeat the process,
until we generate the cobweb diagram ([12], Section 2.1).

At last, we can describe many types of behaviour of the logistic map that can occur
for different values of this parameter µ2 and illustrate it on the following graphs. (We
have used a code 3 in software Matlab for simulation the cobweb diagrams.)

If 0 < µ < 1, µ is so low that population eventually dies, independent of the initial
population size (see Figure 2.4 and 2.5).

Figure 2.4: Solution of the logistic map for µ = 0.8.

Figure 2.5: Cobweb diagram for the logistic map for µ = 0.8.

2http://en.wikipedia.org/wiki/Logistic_map
3http://www.dam.brown.edu/people/cch/am136/Mfiles/cobweb.m

http://en.wikipedia.org/wiki/Logistic_map
http://www.dam.brown.edu/people/cch/am136/Mfiles/cobweb.m
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If 1 < µ < 3, population approaches the value µ−1
µ (in the picture below, µ−1

µ =

0.375) and becomes stable, independent of the initial population. For 1 < µ < 2 it con-
verge faster and quickly approaches the value (see Figure 2.6 and 2.1), for 2 < µ < 3 it
fluctuates around the value for some time (see Figure 2.8 and 2.9).

Figure 2.6: Solution of the logistic map for µ = 1.6.

Figure 2.7: Cobweb diagram for the logistic map for µ = 1.6.
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Figure 2.8: Solution of the logistic map for µ = 2.8.

Figure 2.9: Cobweb diagram for the logistic map for µ = 2.8.
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If 3 < µ < 1 +
√

6, population oscillates between two values (see Figure 2.10 and
2.11).

Figure 2.10: Solution of the logistic map for µ = 3.3.

Figure 2.11: Cobweb diagram for the logistic map for µ = 3.3.
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When µ increases beyond the value 1 +
√

6, population oscillates between 4 values
(see Figure 2.12 and 2.13), then 8, 16, 32 etc. This situation when the system switches to
a new behaviour with twice the period of the original system is called period-doubling
cascade.

Figure 2.12: Solution of the logistic map for µ = 3.545.

Figure 2.13: Cobweb diagram for the logistic map for µ = 3.545.
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The period-doubling cascade ends at value µ ≈ 3.57 and the chaos begins. From
almost all initial conditions we can no longer see any oscillation, the behaviour becomes
chaotic (see Figure 2.14 and 2.15) and starts to be very sensitive to initial value which is a
prime characteristic of chaos.

Figure 2.14: Solution of the logistic map for µ = 3.98.

Figure 2.15: Cobweb diagram for the logistic map for µ = 3.98.
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Beyond the value µ ≈ 3.57, there are so called islands of stability, the isolated ranges
of µ that show non-chaotic behaviour. However, for the most values of µ the behaviour
stays chaotic.

If µ varies from approximately 3.5699 to approximately 3.8284, the periodic phase
are interrupted by bursts of aperiodic behaviour. This development of the chaotic be-
haviour is sometimes called Pomeau-Manneville scenario.

If µ > 4, population diverges for almost all initial values.

The illustration below (Figure 2.16) shows the bifurcation diagram of the logistic map
which summarizes its complex behaviour (we have used a code 4 in software Matlab for
simulation the bifurcation diagram). In general, bifurcation diagram shows dependence
of limit states (equilibria, fixed points) of a system on some parameter. It display some
characteristic property of the asymptotic solution of a dynamical system allowing us to
see where qualitative changes in the asymptotic solution occur. Such changes are termed
bifurcations (see for example Section 2.1 in lecture notes from the Drexel University [5]).

Figure 2.16: Bifurcation (Feigenbaum) diagram for the logistic map.

The bifurcation diagram is a self-similar: if we zoom in (see Figure 2.17) and focus
on one arm of the three, the situation looks like a distorted version of the whole diagram
5. Also the period-doubling cascade is better visible: until the value 1 +

√
6 which is

4http://www.mathworks.com/matlabcentral/fileexchange/32424-logistics-map
5http://en.wikipedia.org/wiki/Logistic_map

http://www.mathworks.com/matlabcentral/fileexchange/32424-logistics-map
http://en.wikipedia.org/wiki/Logistic_map
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approximately 3.45, the population oscillates between two values, from approximately
3.45 to approximately 3.54 it oscillates between four values etc. Below we can see the
enlargement of previous diagram about µ = 3.6.

Figure 2.17: Enlargement of the bifurcation diagram for the logistic map.



Chapter 3

Stochastic Growth Models

Stochastic modelling is a technique of presenting data or predicting outcomes. It’s
based on probability theory therefore it takes into account a certain degree of random-
ness, or unpredictability.

Stochastic model incorporates one or several random variables to predict future
conditions and to see what they might be like. It is possible to simulate processes with
various parameters and observe estimated behaviour of a real system. Of course, the pos-
sibility of one random variable implies that many could occur. For this reason, stochastic
models are run hundreds or even thousands of times. This larger collection of data not
only expresses which outcomes are most likely, but what ranges can be expected as well.
Stochastic model approximates real processes. Obviously it does not correspond exactly
to real situations but it conforms with certain probability.1

For stochastic modelling we assume population size to be a random integer variable
depending on time. Set of random variables creates random process. In this chapter
we focus on models describing population size evolution using Markov chains. Both
continuous and discrete-time models will be considered.

In this chapter we use the following sources: Fundamentals of random processes
[11] written by Prášková and Lachout, bachelor thesis [6] written by V. Kulhavý and the
article [1] written by L.J.S. Allen and E.J. Allen.

3.1 Continuous-time Markov Chain Models

Definition 3.1.1. (Xt, t ≥ 0) is a continuous-time Markov Chain if it is a stochastic process
taking values on a finite or countable set S with the Markov property that

P(Xt = j |Xs = i, Xtn = in, ..., Xt1 = i1) = P(Xt = j|Xs = i) (3.1)

∀i, j, i1, ..., in ∈ S ∀0 ≤ t1 < t2 < ... < tn < s < t : P(Xs = i, Xtn = in, ..., Xt1 = i1) > 0. We
usually consider S ⊆ Z, S ⊆ N0, S = {0, 1, 2, ..., k}, etc.

1http://www.wisegeek.com/what-is-stochastic-modeling.htm
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The changes of state of the system are called transitions, and the probabilities associated
with various state-changes are called transition probabilities2. We denote them

pij(s, t) = P(Xt = j|Xs = i) (3.2)

and we say that pij(s, t) are transition probabilities from state i at time s to state j at time
t. Probabilities pj(t) defined as pj(t) = P(Xt = j), j ∈ S are called absolute probabilities at
time t ([11], Chapter 3).

Definition 3.1.2. For every state i, j ∈ S we define transition rate from state i to state j at
time 0 as

qij = lim
h→0+

pij(h)
h
≥ 0 (3.3)

and

qii = −qi; qi := lim
h→0+

1− pii(h)
h

≥ 0. (3.4)

Then Q = (qij, i, j ∈ S) is called transition rate matrix.

3.1.1 General Process of Growth

The general process of growth is a special case of continuous time Markov process
where the states represent the current size of population. This population consists of
individuals that act independently, they can reproduce but they can not die. Also no
individual can migrate into the population. Population growth rate λj is not directly
proportional to its current size.

Definition and Basic Properties

Let Xt be the population size (a number of individuals that occur in the population)
at some time t and X0 = i0 be the initial population size . Population size at time t ≥ 0
is described as a continuous time Markov chain (Xt, t ≥ 0) with countable state space S,
initial distribution pi0(0) = 1, pj(0) = 0, j > i0(i0 ≥ 0) and transition rates

qj,j+1 = λj for j ≥ i0,
qjk = 0 otherwise (k 6= j).

This chain is called a general process of growth.

Transition rate matrix is

Q =


−λi0 λi0 0 0 . . .

0 −λi0+1 λi0+1 0 . . .
0 0 −λi0+2 λi0+2 . . .
...

...
...

...
. . .

 ,

2http://en.wikipedia.org/wiki/Markov_chain

http://en.wikipedia.org/wiki/Markov_chain
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where growth rates λj > 0 reflect general dependence on current state j of the population
(the states are numbered from j = i0) ([11], Section 3.6).

Absolute probabilities P(Xt = pj(t)) must satisfy Kolmogorov system of differen-
tial equations

p
′
i0(t) = −λi0 pi0(t),

p
′
j(t) = λj−1 pj−1(t)− λj pj(t), j > i0

with initial condition pi0(0) = 1 ([11], Section 3.6). We are going to solve these equations.

We use separation of variables to solve the first differential equation.

p
′
i0(t) = −λi0 pi0(t)
dpi0
dt

= −λi0 pi0(t)∫ dpi0
pi0(t)

= −λi0

∫
dt

ln(pi0(t)) = −λi0 t + c, c = c2 − c1

ln(pi0(t)) = ln(ke−λi0 t), c = ln(k)

pi0(t) = ke−λi0 (t)

We determine k = 1 by substitution of initial condition. Therefore

pi0(t) = e−λi0 t. (3.5)

Then we solve this system recurrently.

p
′
i0+1(t) = λi0 pi0(t)− λi0+1 pi0+1(t)

p
′
i0+1(t) + λi0+1 pi0+1(t) = λi0 e−λi0 t

First we search for a solution of homogeneous differential equation

p
′
i0+1(t) + λi0+1 pi0+1(t) = 0, (3.6)

and we get

pi0+1(t) = ce−λi0+1(t). (3.7)

Next we use variation of parameters (variation of constants) method for finding a partic-
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ular solution.

pi0+1(t) = ce−λi0+1(t)

p
′
i0+1(t) = c

′
(t)e−λi0+1(t) − λi0+1c(t)e−λi0+1t

c
′
(t) = e−λi0+1t

c
′
(t) = λi0 e−λi0 t

c
′
(t) = λi0 e−(λi0+λi0+1)t

c(t) =
λi0

−λi0 + λi0+1
e−(λi0−λi0+1)t

We substitute initial condition and we obtain c =
λi0

λi0 − λi0+1
. Thus the formula is in the

following form

pi0+1(t) =
λi0

λi0 − λi0+1
e−λi0+1t +

λi0
λi0 − λi0+1

e−λi0 t. (3.8)

The particular solution of non-homogeneous differential equation is

pi0+1(t) = λi0 e−λi0 t
∫ t

0
eλi0+1s pi0(s)ds. (3.9)

In general:

pj(t) = λj−1e−λjt
t∫

0

eλjs pj−1(s)ds, j > i0. (3.10)

Finally, by solving this system we determine absolute probabilities recurrently by

pi0(t) = e−λi0 t,

pj(t) = λj−1e−λjt
t∫

0

eλjs pj−1(s)ds, j > i0.

Definition 3.1.3. Homogeneous Markov chain with stable states is called regular if

Pi(ξ = ∞) = 1, ∀i ∈ S, (3.11)

where random variable ξ is called the explosion time and it is defined as ξ =
+∞
∑

k=1
sk, where

sk are time periods between particular transitions.

In other words, process is regular if only finite number of transitions between states of
the chain occurs on every finite interval (0, t) with probability equal to one ([11], Section
3.1).

Lemma 3.1.1. General growth process is regular if and only if
∞

∑
j=i0

1
λj

= ∞. (3.12)

Proof. ∀i0 ≥ 0 : Pi0(Yn = n + i0) = 1 for relevant nested chain Yn ([11], Section 3.6).
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Stationary distribution

Definition 3.1.4. Markov chain is called irreducible if its state space is a single commu-
nicating class; in other words, if it is possible to get to any state from any state.3 ([11],
Section 2.4)

Definition 3.1.5. [11] Let (Xt, t ≥ 0) be a continuous-time Markov chain with state space
S and transition matrix P. A (row) vector π= {πj, j ∈ S} with πj ≥ 0 for all j and
∑j∈S πj = 1, is said to be a stationary distribution if

πT = πT P, (3.13)

or
πj = ∑

k∈S
πk pkj, j ∈ S. (3.14)

Vector π which satisfies (3.13) is called a stationary distribution because it makes the
process stationary. That is, if we set the initial distribution of X0 to be such a π, then the
distribution of Xt will also be π for all t > 0.

Lemma 3.1.2. Let X(t) be a regular general process of growth and let this chain be irreducible.
Denote

ρ0 = 1

ρN =
λi0

λi0+N
, N = 1, 2, ... .

Let
∞

∑
N=0

ρN =
∞

∑
N=0

λi0
λi0+N

= λi0

∞

∑
N=0

1
λi0+N

< ∞. (3.15)

Then there is exactly one stationary distribution of the process X(t) in following formula

πN = ρN(
∞

∑
N=0

ρN)
−1, N = 0, 1, ... . (3.16)

Proof. Let X(t) be regular, irreducible general process of growth and let ∑∞
N=0 ρN < ∞.

Let’s find invariant measure η such as

ηTQ = 0T. (3.17)

For transition rate matrix of general growth process we obtain these equations from the
formula above

−λi0 η0 = 0
−λi0+NηN + λi0+(N−1)ηN−1 = 0

for N = 1, 2, ... . From the second equation we can express ηN :

ηN =
λi0+(N−1)

λi0+N
ηN−1 =

λi0+(N−1)λi0+(N−2)

λi0+Nλi0+(N−1)
ηN−2 =

λi0
λi0+N

η0 = ρNη0. (3.18)

3http://en.wikipedia.org/wiki/Markov_chain

http://en.wikipedia.org/wiki/Markov_chain
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Obviously, stationary distribution exists if ∑∞
N=0 ρN < ∞, therefore

∞

∑
N=0

λi0
λi0+N

< ∞, (3.19)

and is equal to

πN = ρN(
∞

∑
N=0

ρN)
−1, N = 0, 1, ... . (3.20)

The solution is unique because of the irreducibility of the chain.

The principle above is based on deduction of stationary distribution of general birth
and death process ([6], Subsection 3.2.1).

Generating function

We have already found the absolute probabilities by using the Kolmogorov differ-
ential equations. Another way how to find these probabilities is using generating func-
tion method. Consider generating function with this distribution {pj(t), j ∈ N0},

π(s, t) =
∞

∑
j=0

pj(t)sj (3.21)

as a function of two variables s, t ([11], Section 3.4). Then

∂π

∂t
(s, t) =

∞

∑
j=0

p
′
j(t)s

j

∂π

∂s
(s, t) =

∞

∑
j=1

jpj(t)sj−1

π(s, 0) =
∞

∑
j=0

pj(0)sj = pi0(0)s
i0 = si0 .

From Kolmogorov differential equations

p
′
i0(t) = −λi0 pi0(t),

p
′
j(t) = λj−1 pj−1 − λj pj(t), j > i0

we obtain

∞

∑
j=2

p
′
j(t)s

j =
∞

∑
j=2

(λj−1 pj−1(t)sj − λj pj(t)sj) =
∞

∑
j=2

λj−1 pj−1(t)sj −
∞

∑
j=2

λj pj(t)sj. (3.22)

Unfortunately, it is possible to express the searched absolute probabilities from this for-
mula only in special cases, in particular in a linear case.
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Linear Growth Process (Yule Process)

A special case of general growth process is linear growth process also called Yule
process. It is a birth process based on the assumption of independence and of constant
birth rate. We assume that each individual gives birth to a new one in interval (t, t + h]
with probability λh + o(h) (to no one with probability 1− λh + o(h), λ > 0.) Then the
transition probabilities are

pj,j+1(h) =
(

j
1

)
(λh + o(h))(1− λh + o(h))j−1 = jλh + o(h)

pj,j+k = o(h) k ≥ 2

pjj(h) = (1− λh + o(h))j = 1− jλh + o(h)

pjk = 0 otherwise.

The transition rates are

qj,j+1 = jλ

qj = jλ

qjk = 0 otherwise,

thus the transition rate matrix is

Q =


−λ λ 0 0 . . .
0 −2λ 2λ 0 . . .
0 0 −3λ 3λ . . .
...

...
...

...
. . .

 .

We suppose the initial condition p1(0) = 1, pj(0) = 0, j > 1. Absolute probabilities must
satisfy Kolmogorov differential equations system

p
′
1(t) = −λp1(t)

p
′
j(t) = λjpj(t) + λ(j− 1)pj−1(t), j > 1

with initial condition p1(0) = 1 ([11], Section 3.5). This system of differential equations
can be solved by generating function method.

We multiple the system by sj and get

+∞

∑
j=1

p
′
j(t)s

j = −λ
+∞

∑
j=1

jpj(t)sj + λ
+∞

∑
j=1

(j− 1)pj−1(t)sj

+∞

∑
j=1

p
′
j(t)s

j = −λ
+∞

∑
j=1

jpj(t)sj + λ
+∞

∑
j=1

jpj(t)sj+1

which we can write as a partial differential equation(PDE)

∂π

∂t
(s, t) = −λs

∂π

∂s
(s, t) + λs2 ∂π

∂s
(s, t) = λs(s− 1)

∂π

∂s
(s, t). (3.23)
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We solve this PDE and obtain its solution

π(s, t) =
+∞

∑
j=1

pj(t)sj =
se−λt

1− (s + se−λt)
. (3.24)

Next we use this formula a0
1−q =

+∞
∑

j=0
a0qj and adjust the equation

se−λt

1− (s− se−λt)
= se−λt

+∞

∑
j=0

(s− se−λt)j

e−λt
+∞

∑
j=0

(1− e−λt)jsj+1 =
+∞

∑
j=0

e−λt(1− e−λt)j−1sj.

Because this result is equal to ∑+∞
j=1 pj(t)sj, we can say that the solution of the Kolmogorov

differential equation system are the absolute probabilities

pj(t) = e−λt(1− e−λt)j−1, j ≥ 1. (3.25)

We can easily verify that sum of these probabilities is equal to one for every t ≥ 0:

+∞

∑
j=1

pj(t) =
e−λt

1− (1− e−λt)
= 1. (3.26)

Population mean at time t is

E(Xt) =
+∞

∑
j=1

jpj(t) = eλt. (3.27)

3.1.2 Stochastic Logistic Growth Model

We evolve the stochastic logistic growth model from the general growth model by
taking

λi0+N = b1N(t)− b2N(t)2, (3.28)

where N(t) is the population size at time t and b1, b2 are positive parameters ([6], Section
4.2).

We can see simulation of the example for concrete parameters b1 = 2, b2 = 0.02 in
Figure 3.1 and 3.2 (simulations were done by modifying the original source code 4 written
by R.Gaigalas and I.Kajin in software Matlab). There are seven randomly generated paths
in these graphs which represent stochastic solutions.

In Figure 3.1 there are vertical abscissas which have been caused by time jumps.
Actually they are not a part of the simulated solution and are illustrated for convenience
only. The trajectories of continuous-time Markov chains are piecewise constant functions
as described in Figure 3.2.

4http://www.mathworks.com/matlabcentral/fileexchange/2493-simulation-of-stochastic-
processes/content/stproc/birthdeath.m

http://www.mathworks.com/matlabcentral/fileexchange/2493-simulation-of-stochastic-processes/content/stproc/birthdeath.m
http://www.mathworks.com/matlabcentral/fileexchange/2493-simulation-of-stochastic-processes/content/stproc/birthdeath.m
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Figure 3.1: Simulation of stochastic logistic growth for parameters b1 = 2, b2 = 0.02.

Figure 3.2: Modified simulation of stochastic logistic growth for parameters b1 = 2, b2 =
0.02.
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3.2 Discrete-time Markov Chain Models

Definition 3.2.1. (Xn; n ∈ N0) is a discrete-time Markov Chain if it is a discrete time stochas-
tic process with discrete state space S = {0, 1, ..., N} and with the Markov property that

P(Xn+1 = j|X0 = i0, X1 = i1, ..., Xn = i) = P(Xn+1 = j|Xn = i) (3.29)

∀n ∈ N0 ∀i0, i1, ..., i, j ∈ S : P(X0 = i0, X1 = i1, ..., Xn = i) > 0.

Conditional probabilities P(Xn+1 = j|Xn = i) = pij(n, n + 1) (if they are defined) are
called transition probabilities from state i at time n to state j at time n + 1 ([11], Chapter
2).

3.2.1 General Process of Growth

Let X(t) denote the random variable for the population size at some time t. The
population size is described by the discrete-time Markov chain with discrete state space
S = {0, 1, ..., N}5. Let ∆t be a fixed time interval, t ∈ {0, ∆t, 2∆t, ...} and let λj > 0 be the
growth rate. Then a birth occurs with probability λj∆t and the transition probabilities
pij(∆t) are

pj,j−1(∆t) = λi∆t, j ∈ {1, ..., N}
pj,j(∆t) = 1− λi∆t, j ∈ {0, 1, ..., N}

pjk = 0, j 6= k otherwise.

This chain is called a discrete general process of growth.

Now pj(t + ∆t) satisfies the following difference equations

pj(t + ∆t) = λj−1∆tpj−1(t) + (1− λj∆t)pj(t) f or j = 1, 2, ..., N − 1

p0(t + ∆t) = p0(t) f or j = 0
pN(t + ∆t) = λN−1∆tpN−1(t) + pN(t) f or j = N.

The difference equations can be expressed in matrix form as

p(t + ∆t) = Pp(t), pi0 = 1, (3.30)

where P = (pij(∆t)) is the transition matrix in the following form

P =



1 0 0 0 . . . 0
0 1− λ1∆t λ1∆t 0 . . . 0
0 0 1− λ2∆t λ2∆t . . . 0
0 0 0 1− λ3∆t . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . λN−1∆t
0 0 0 0 . . . 1


.

5therefore both time and population size are discrete-valued
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To ensure that P is a stochastic matrix (it means it is nonnegative and the column elements
sum to one), it is assumed that

max
j∈{1,2,...,N}

{λj∆t} ≤ 1. (3.31)

Information about stochastic birth and death process containing the discrete-time Markov
chain model, continuous-time Markov chain model and more can be found in the article
[1] written by L.J.S. Allen and E.J. Allen.

Since we know the transition matrix, we can simulate the discrete-time growth pro-
cess. We can see the simulation for concrete parameters b1 = 1, b2 = 0.02 in the Figure
3.3 (simulations were done by modifying the original source code6 written by Craig L.
Zirbel in software Matlab).

For the initial population size i0 = 2, there are seven randomly generated sequences
in this graph which represent stochastic solutions, and the mean value represented by the
red curve, which is determined from a hundred of randomly generated sequences.

Figure 3.3: Simulation of discrete-time Markov Chain growth process for parameters
b1 = 1, b2 = 0.02 and initial condition i0 = 2.

In Figure 3.4 there are simulations for b1 = 1, b2 = 0.2 and b1 = 1, b2 = 0.002.
We can see what happen when we have b1 fixed and b2 is changing - if b2 is bigger the

6http://www-math.bgsu.edu/ zirbel/ap/

http://www-math.bgsu.edu/~zirbel/ap/
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population grows faster, and conversely, if b2 is smaller the population growth slows
down.

(a) b2 = 0.2 (b) b2 = 0.002

Figure 3.4: Simulation of discrete-time Markov Chain growth process for parameters
b1 = 1, b2 = 0.2/b2 = 0.002 and initial condition i0 = 2.

Similar behaviour can be observed in Figure 3.5 only this time we change the pa-
rameter b1 while the second parameter b2 is fixed.

(a) b1 = 2.5 (b) b2 = 0.8

Figure 3.5: Simulation of discrete-time Markov Chain growth process for parameters
b1 = 2.5/b1 = 0.8, b2 = 0.02 and initial condition i0 = 2.



Chapter 4

Conclusion

At the final chapter, we are going to summarize basic characteristics, advantages
and disadvantages of the presented models and compare stochastic and deterministic
models.

The first mentioned model was the logistic equation (or the logistic growth). It is a
very simple model and its potential disadvantages are well known:

(i) rate function r(t) = dN
Ndt is related to N linearly which means the first simplification,

(ii) the rate of population change responds to variations in density instantaneously, i.e.
there is no time lag like in the real world,

(iii) the model does not incorporate the effects of external influences,

(iv) it neglects effects of population structure.

In spite of these failings, the logistic model is taught by all ecology texts. The reason
is that it provides a simple and powerful metaphor for a regulated population, and the
reasonable starting point for modelling single-population dynamics. Moreover it can be
modified to address all four criticisms listed above ([14], Subsection 3.1.1).

The second presented model was logistic map. Although we are dealing with very
simple equation, the model is capable of very various and complex behaviour and at last
this simple system will be seen to display many of the essential features of deterministic
chaos.

Then we focused on stochastic models: continuous-time and discrete-time Markov
Chain models. The main difference between these two approaches is that in the discrete-
time model we are especially interested in the information about a number of individuals
in the population in a concrete time while the continuous-time model also adds the in-
formation for how long the population stays in the particular state.

Finally, there is Figure 4.1 that compares the stochastic and the deterministic solu-
tion in the continuous time. Like in the Subsection 3.1.2 there are seven randomly gen-
erated functions which represent stochastic solutions and in addition there is the exact
deterministic solution represented by the green line.

31
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Figure 4.1: Comparison of stochastic and deterministic growth models. Simulation of
stochastic logistic growth is for parameters b1 = 2, b2 = 0.02, simulation of deterministic
logistic growth is for parameters r = 2, K = 2

0.02 .



Appendix A

Content of the CD attachment

The attached CD contains:

• Matlab - includes Matlab scripts used for the simulations presented in the thesis.
Both original code cited in the text and modified versions are included.

• Latex - includes Latex files used for generating the thesis with all settings, graphics
and bibliography.

• Thesis.pdf - the Bachelor thesis.

• README.txt - this text file.
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[7] Milan Kučera, Differential Equations in Biology (Diferenciální rovnice v biologii), Lecture
notes from Univesity of West Bohemia, Pilsen, Czech Republic, 2011.

[8] Michaels S. Lewis-Beck, Alan Bryman, and Tim Futing Liao, The sage encyclopedia of
social science research methods, SAGE Publications, Thousand Oaks, 2004.

[9] Antony Millner, The logistic map - some further details, Lecture notes from African
Institute for Mathematical Sciences, Cape Town, South Africa, 2011.
URL http://users.aims.ac.za/ antony/logistic2.pdf.

[10] James Dickson Murray, Mathematical Biology. I, An Introduction, 3rd ed., Springer,
New York, 2002.

[11] Zuzana Prášková and Petr Lachout, Fundamentals of random processes (Základy náhod-
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