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Preface

The subject of the bachelor thesis is a comparison of two different stochastic popula-
tion models with regard to persistence time. We will study the discrete and continuous-
time Markov chain models which are commonly used in population biology.

At first we study the theory of stochastic population models where we describe the
linear and the general birth and death process. Then the discrete and continuous-time
Markov chain models will be discussed. These models take into account the random
nature of the individual birth and death process-demographic variability but do not
consider random fluctuations of the population in the environment.

Finally we present some comparisons of the two Markov chain models to show
that the models agree well.
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Czech Republic





Contents

1 Introduction 1

2 Theory of stochastic population models 3
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Linear birth and death process . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 General birth and death process . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Stochastic birth and death processes 12
3.1 Discrete-time Markov chain model . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Continuous-time Markov chain model . . . . . . . . . . . . . . . . . . . . 17

4 Numerical examples 25
4.1 Deterministic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Markov Chain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Mean Persistence Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusion 36

A Appendix 37
A.1 The factorisation method for a 3-diagonal matrix . . . . . . . . . . . . . . 37
A.2 The proof of Lemma 4.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.3 Description of the thesis attachment . . . . . . . . . . . . . . . . . . . . . 41



Chapter 1

Introduction

Population models are types of mathematical models that are applied to the study of
population dynamics. Models allow a better understanding of how complex interac-
tions and processes work. Modeling of dynamic interactions in nature can provide a
manageable way of understanding how numbers change over time or in relation to
each other. The models may help to explain the system, to make predictions about
behavior and to study the effects of different components.

Population models are used to determine the maximum harvest for agricultur-
ists, to understand the dynamics of biological invasions, and have numerous environ-
mental conservation implications. Population models are also used to understand the
spread of parasites, viruses, and disease. The realization of our dependence on en-
vironmental health has created a need to understand the dynamic interactions of the
Earth’s flora and fauna. Methods in population modelling have greatly improved our
understanding of ecology and the natural world [7].

Population modelling became of particular interest in the twentieth of the 20th
century and is closely connected to the names like biologist Raymond Pearl, physicist
Alfred J. Lotka and mathematician Vito Volterra. They formed the nowadays so called
deterministic Volterra-Lotka model for competition that applies the logistic equation
to two species illustrating their competition. Deterministic population models nowa-
days more or less follow the ideas of Volterra and Lotka that unfortunately showed to
be a weak description of the Earth’s processes that are greatly stochastic [8].

Stochastic population models originate to the second half of the 20th century and
are nowadays studied rather extensively. Stochastic models are mathematical mod-
els used as a tool for estimating probability distributions of potential population out-
comes by allowing for random variation in one or more inputs over time. The random
variation is usually based on fluctuations observed in historical data for a selected pe-
riod of time which uses standard time-series techniques. There exist several types of
stochastic population models, for example Markov chain or Markov processes models
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[4], models described by stochastic differential equations or random dynamical sys-
tems etc [5].

In this thesis we focus on discrete or continuous time Markov chain models as they
are described by Allen and Allen in their paper [1]. The book Finite Markov Chains
and Algorithmic Applications [3] also deals with the theory of Markov chains but is
mostly focused on algorithmic applications. In general, there exits many books which
deal with the theory of Markov chains but they are usually focused on one specific
topic for example as Markov chain Monte Carlo, which is discussed in book Markov
Chains: Gibbs field, Monte Carlo Simulations and Queues [2].

In Chapter 2 we focus on theory of stochastic population models. We present
preliminaries such as definitions of Markov chains and their basic properties. We
consider linear birth and death process and general birth and death process that are
widely described in [6].

Chapter 3 is devoted to stochastic birth and death processes. In Section 3.1 we
present the discrete-time Markov chain model. In this section we determine the tran-
sition matrix, the absorbing state and the mean persistence time. In Section 3.2 we
present the continuous-time Markov chain model. We determine the intensity matrix,
the absorbing state and the mean persistence time. We will also proof some proposi-
tions about the mean persistence time for linear and nonlinear case and also for the
liner and nonlinear case of higher order moments.

Chapter 4 is devoted to numerical examples. For pedagogical purposes we present
the deterministic solution of the logistic model. The main result of the thesis is a com-
parison of the discrete-time and the continuous-time model. We show that these two
models agree well even for small initial population sizes based on simulations where
we present the mean, persistence time and standard deviation for both models. At the
end we summarise advantages and disadvantages of the presented models.

In Appendix we present the factorisation method for a 3-diagonal matrix which
can be used to proof the solution for the mean persistence time mentioned in Chapter
3 in Section 3.2. We also present the solution of the deterministic equation and we
provide some information about the attached MATLAB files.
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Chapter 2

Theory of stochastic population
models

2.1 Preliminaries

In stochastic models the population size is considered as a random variable dependent
on time. Let J(t) denote the random variable for the total population size at time t,
N denote the maximum population size. In both discussed cases J(t) is a discrete
random variable J(t) ∈ {0, 1, 2, . . . , N}.

Let λ(j) denote the birth rate and µ(j) the death rate of the population when its
size is j ∈ {0, 1, . . . , N}. The basic population model expects the birth rate λ(j) and the
death rate µ(j) to be continuous and differentiable functions of the population size j. It
is also assumed the existence of nonnegative numbers K and N, such that 0 < K < N
and

λ(0) = µ(0) and λ(j) = 0 for j ≥ N, (2.1)
λ(j) > 0 for j ∈ (0, N) and µ(j) > 0 for j ∈ (0, N], (2.2)
λ(j) > µ(j) for j ∈ (0, K), (2.3)
λ(j) < µ(j) for j ∈ (K, N). (2.4)

Assumption (2.1) says that when there has no-one been born there cannot die any-
one and that there will not be born anyone even if the population size is j when j ≥ N.
Assumption (2.2) shows that there will be some births and deaths when j ∈ (0, N)
and that a death can occure if j = N. Assumption (2.3) shows that for j ∈ (0, K) the
population will not extinct. If j does not belong to the interval (0, K) but to the interval
(0, ∞) an explosion will occure. Assumption (2.4) says that the population will extinct
if j ∈ (K, N).

In the theory of random processes it is important to mention the following prop-
erties and definitions which will be used in the text.

3



Let (ω, A, P) be a probability space where ω is the state space, A is a σ− algebra
and P is the probability measure. Let T ⊂ R be a set of times. The family of ran-
dom variables (Xt, t ∈ T) defined at (ω, A, P) is called the random process. We will
consider both discrete-time (e.g.T ⊂N) and continuous-time random processes.

Definition 2.1.1. The sequence of integer random variables {Xn, n ∈N0} is called the
Markov chain with discrete time and the state space S if

P(Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i) (2.5)

for all n = 0, 1, . . . and all i, j, in−1, . . . , i0 ∈ S such that

P(Xn = i, Xn−1 = in−1, . . . , X0 = i0) > 0

Definition 2.1.2. The system of integer random variables {Xt, t ≥ 0} defined on the
state space {ω, A, P} is called the Markov chain with continuous time and the count-
able state space S = {0, 1, . . . } if

P(Xt = j|Xs = i, Xtn = in, . . . , Xt1 = i1) = P(Xt = j|Xs = i) (2.6)

for all i, j, i1, . . . , in ∈ S and for all 0 ≤ t1 < t2 < · · · < tn < s < t for which

P(Xs = i, Xt?n = in, . . . , Xt1 = i1) > 0

Markov property means that the probability of a result in the future time n + 1 if
we know the result in the present time n and results of the past times n− 1, n− 2, . . . , 0,
is the same as if we know only the result in the present time. The Markov property
can be also marked as property without the dependence on the past.

A state j is called accessible from a state i (written i → j) if a system started in
state i has a non-zero probability of transitioning into state j at some point. State j is
accessible from state i if there exists an integer n = 0 such that

P(Xn = j|X=i) = pn
ij > 0

where pn
ij is the transition probability from state i to state j. For n = 0 it means that

every state is accessible from itself.
A state i is said to communicate with state j (i ↔ j) if both i → j and j → i. A

set of states C is a communicating class if every pair of states in C communicates with
each other, and no state in C communicates with any state not in C. Communication
in this sense is an equivalence relation and communicating classes are the equivalence
classes of this relation. A communicating class is closed if the probability of leaving
the class is zero in other words that if i is in C but j is not, then j is not accessible from
i.

A Markov chain called irreducible if it is possible to get to any state from any state.
The time of the first return to the state j τj(1) is a random variable which takes the

values 1, 2, . . . or value ∞ and marks a random moment where the Markov chain at
first gets into the state j after leaving the initial state.
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The state j of the Markov chain is called permanent if the chain which comes from
j returns back to j with the probability 1 after the finitely many steps i.e.

Pj(τj(1) < ∞) = 1.

[6]

2.2 Linear birth and death process

Stochastic birth and death processes are described as a population of individuals that
are able to duplicate and die. Let o(h) be a residual function such that

lim
h→0

o(h)
h

= 0.

For simple models we assume that the probability that a new individual is born to an
arbitrary individual in the short time interval (t, t+ h] is λh+ o(h) and that more indi-
viduals are born with the probability o(h). In the interval (t, t + h] one individual can
die with the probability µh + o(h) and more individuals can die with the probability
o(h). We also assume that the destinies of the individuals are independent.

The range of the population Xt at time t forms a the continuous-time Markov chain
with the following intensities Q = (qi,j)

1

qj,j+1 = jλ, 0 ≤ j < ∞,

qj,j−1 = jµ, 1 ≤ j < ∞,

qjk = 0, otherwise,

qj = j(λ + µ), 0 ≤ j < ∞.

The absolute probabilities pj(t) = P(Xt = j) conforms the system of differential
equations

p
′
0(t) = µp1(t)

p
′
j(t) = (j− 1)λpj−1(t)− j(λ + µ)pj(t) + (j + 1)µpj+1(t), j = 1, 2, ...

and we consider the initial condition p1(0) = 1.

To solve this system a generating function method ca be used, see [6] pp. 107-109
to get that for λ = µ

p0(t) =
λt

1 + λt

pj(t) =
(λt)j−1

(1 + λt)j+1 , 1 ≤ j < ∞

1Absolute intensities qj appear in the intensity matrix Q on the diagonal as qj,j = −qj.
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and for λ 6= µ
where for simplifying we use

A(t) =
1− e(λ−µ)t

µ− λe(λ−µ)t

and

p0(t) = µA(t)

pj(t) = (1− λA(t))(1− µA(t))(λA(t))j−1, j ≥ 1.

The matrix of transition probabilities Q∗ among the states of the nested discrete-
time Markov chain shows that the zero state is an absorbing state. This means that the
population that has once extinct cannot recover any more.

Q∗ =


1 0 0 0 . . .
µ

(λ+µ)
0 λ

(λ+µ)
0 . . .

0 µ
(λ+µ)

0 λ
(λ+µ)

. . .
. . . . . . . . . . . . . . .


The probability of population extinction is therefore

P(Xt = 0) = p0(t) =

{ λt
(1+λt) , if λ = µ,

1−e(λ−µ)t

(µ−λe(λ−µ)t µ, if λ 6= µ.

Using the limit transition for t→ ∞ we find out that the population extinction is

lim
t→∞

p0(t) =
{

1, if λ ≤ µ,
µ
λ , if λ > µ.

[6]

2.3 General birth and death process

In the general birth and death process as well as in the linear birth and death pro-
cess we assume the population of individuals to be able to duplicate and die. The
population range at time t forms a continuous-time Markov chain with the following
intensities:

qj,j+1 = λj, j = 0, 1, . . .

qj,j−1 = µj, j = 1, 2, . . .

qjk = 0 otherwise

q0 = λ0

qj = λj + µj, j = 1, 2, . . . .
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The intensity matrix is

Q =


−λ0 λ0 0 0 0 . . .
µ1 −(λ1 + µ1) λ1 0 0 . . .
0 µ2 −(λ2 + µ2) λ2 0 . . .
. . . . . . . . . . . . . . . . . .


For better illustration we give a detail of the matrix Q in the neighbourhood of the j-th
row

Q =



. . . . . . . . . . . . . . . . . . . . .

. . . µj−1 −(λj−1 + µj−1) λj−1 0 0 . . .

. . . 0 µj −(λj + µj) λj 0 . . .

. . . 0 0 µj+1 −(λj+1 + µj+1) λj+1 . . .

. . . . . . . . . . . . . . . . . . . . .


Our aim is to find absolute probabilities pj(t), j ∈ S, with the fixed initial state i

which means for the initial distribution pi = 1, pj = 0, j 6= i. The system of differential
equations for absolute probabilities pj(t) we derive under the same conditions as the
corresponding system of prospective Kolmogorov differential equations ([6] pp. 82-
83).

p
′
0(t) = −λ0 p0(t) + µ1 p1(t)

p
′
j(t) = λj−1 pj−1(t)− (λj + µj)pj(t) + µj+1 pj+1(t), j = 1, 2, ...,

with initial condition pi(0) = 1, pj = (0) = 0, j 6= i.
Considering these initial conditions the absolute probabilities match the i-th row

of matrix P(t).
Furthermore, we restrict ourselves to calculating the limit probabilities for which

we use the following theorem.

Theorem 2.3.1. Let {Xt, t ≥ 0} be a continuous-time Markov chain with the intensity matrix
Q and the nested chain {Yn, n ∈ N0}, which is irreducible with all states permanent. Let
π = {πj, j ∈ S} where πj > 0 for all j ∈ S, ∑

j∈S
πj = 1, is the nontrivial solution of the

system equations
πTQ = 0T.

Then for the transition probabilities and the absolute probabilities in the chain {Xt, t ≥ 0} are

lim
t→∞

pi,j(t) = πj for all i, j ∈ S

lim
t→∞

pj(t) = πj for all j ∈ S.
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Proof. See [6] pp. 94.

We will assume that all intensities λj, j ≥ 0, and µj, j > 0 are positive. Then the
transition probability matrix of a nested chain is

Q∗ =


0 1 0 0 . . .
µ1

λ1+µ1
0 λ1

λ1+µ1
0 . . .

0 µ2
λ2+µ2

0 λ2
λ2+µ2

. . .
...

...
...

...
. . .

 .

It can be seen that the nested chain is irreducible. Whether all the states of the
nested chain are permanent can be decided using Theorem (2.3.1) or we may also find
out if the stationary distribution exists.

Theorem 2.3.2. In an irreducible chain with the state space S = 0, 1, ..., all states are perma-
nent if and only if the only solution of the equations

xi =
+∞

∑
j=1

q∗ijxj, i = 1, 2, ... (2.7)

on the iterval [0, 1] is a trivial solution xi = 0, i = 1, 2, ... All states are transitional if and
only if (2.7) has in [0, 1] a nontrivial solution.

Proof. See [6] pp. 49.

Theorem 2.3.3. Let {Xt, t ≥ 0} be a continuous time Markov chain with the intensity matrix
Q and a nested chain {Yn, n ∈ N0} which is irreducible with all states permanent. Then
there exists an invariant measure η of the process {Xt, t ≥ 0} which is determined uniquely
(excluding a multiplicative constant) as the nontrivial solution of the system

ηTQ = 0T.

Moreover
πj =

ηj

∑
j∈S

ηj

is the stational distribution of the process {Xt, t ≥ 0}.

Proof. See [6] pp. 92-93.

In our case it is sufficient to show that ∑
j∈S

πjqj < ∞ where {πj} is the non-trivial

solution of the equation πTQ = 0T because the proof of Theorem (2.3.3) (See [6] pp.
92-93) implies that {πjqj} is an invariant measure in the nested chain.
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Being the conditions of our Theorem (2.3.1) fulfilled we can find the limit prob-
abilities πj = lim

n→∞
pj(t) as a solution of the system πTQ = 0T which satisfies the

conditions πj > 0, ∑
j∈S

πj = 1.

The considered system is

−λ0π0 + µ1π1 = 0
−λj−1πj−1 − (λj + µj)πj + µj+1πj+1 = 0, ≥ 1.

If we put

µjπj − λj−1πj−1 = Kj, ≥ 1

we can rewrite this system in the following form

K1 = 0
Kj+1 − Kj = 0, j ≥ 1.

Apparently Kj = 0 for j ≥ 1, so

πj =
λj−1

µj
πj−1 =

λj−1λj−2

µjµj−1
πj−2 = ... =

λj−1λj−2...λ0

µjµj−1...µ1
π0 = ρjπ0,

where we have denoted

ρj =
λj−1λj−2...λ0

µjµj−1...µ1
π0, j ≥ 1.

If we define ρ0 = 1, we can write

πj = ρjπ0, j ≥ 0.

The solution {πj, j ≥ 0}will be the probability distribution if and only if ∑∞
k=1 ρk <

∞. Hence

πj = ρj

(
∞

∑
k=0

ρk

)−1

and πj > 0, j ≥ 0.

If λ0 = 0 then 0 will be an absorbing state and the nested chain will be reducible
(will be q∗00=1). The probability that the population which has just i individuals at
the beginning will ever extinct is the same as the probability that the nested chain
which was in the state i at the beginning will ever end in the absorbing state 0. The
probability of extinction that we were looking for is lim

n→∞
pi0(t). If we denote it ui we

can determine using the following theorem.
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The variable T is a set of transitional states, τ is a random variable τ = in f {n >
0 : Xn 6∈ T}which marks the time output from the set of transitional states T, Tc is the
closed set of permanent states and Xτ is the state in which the chain comes as soon as
it leaves the set of transitional states.

Theorem 2.3.4. For probability uij defined as uij = Pi(Xτ = j), i ∈ T, j ∈ Tc we have
that

uij = pij + ∑
ν∈T

piνuνj, i ∈ T, j ∈ Tc.

Proof. See [6] pp. 43-44.

Let J0 = 0 and let J1, J2, . . . be consecutive time moments where occur transitions
between the states of the Markov chain i.e.

J1 = in f {t > 0 : Xt 6= X0},
J2 = in f {t > J1 : Xt 6= XJ1},

. . .
Jn+1 = in f {t > Jn : Xt 6= XJn}, n ≥ 0.

The times between individual transitions are S1 = J1, S2 = J2 − J1 (if J1 < ∞, else
S2 = ∞) and so on. Apparently

Jn =
∞

∑
k=1

Sk n ≥ 1.

Then we can denote

ξ = supJn =
∞

∑
k=1

Sk.

Definition 2.3.1. Homogenous Markov chain with permanent states is called regular
if

Pi(ξ = ∞) = 1 ∀i ∈ S.

The random variable ξ is called time to explosion.

If a process is regular it means that for any finite interval (0, t) there will be with
probability one only a finite number of transitions among the states of the chain. If
there was an infinite number of transitions in the finite interval, the process would
explode.

The probability of extinction can be determined according to the Theorem (2.3.4).
with probability q∗ij as the solution of the system
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ui = q∗i0 +
∞
∑

k=0
q∗ikuk, i = 1, 2, ...,

or as the solution of the system

u1 =
µ1

λ1 + µ1
+

λ1

λ1 + µ1
u2

ui =
µi

λi + µi
ui−1 +

λi

λi + µi
ui+1, i ≥ 2.

It is also worth mentioning that the sufficient condition for regularity of the chain is

∞

∑
k=0

1
λj

= ∞.

This condition ensures regularity in the growth process in which population size
only increases. But now it is no longer a necessary condition. [6]
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Chapter 3

Stochastic birth and death processes

3.1 Discrete-time Markov chain model

The discrete-time Markov chain model supposes both time and population size to be
discrete-valued. Let v be a fixed time interval and t ∈ {0,4h,42h}. We also assume
4h to be sufficiently small so that there occurs at most one change during the time
interval4h, either a birth or a death.

When we have the population size j probability that there occurs a birth is λj4h
and probability that there occures a death is µj4h. For the discrete set of points j ∈
{0, 1, 2, . . . , N} we expect λj4h and µj4h to satisfy assumption (2.1),(2.2),(2.3) and
(2.4).

Let the probabilities associated with J(t) be denoted as

pj = Prob{J(t) = j}, j = 0, 1, . . . , N,

and
p(t) = (p0(t), p1(t), . . . , pN(t))T.

The transition probabilities we denote as

pij(4h) = Prob{J(t +4h) = j|J(t) = i},

where

pj,j−1(4h) = µj4h for j ∈ {1, 2, . . . , N}
pj,j+1(4h) = λj4h for j ∈ {0, 1, 2, . . . , N − 1}

pj4h = 1− [λj + µj]4h for j ∈ {0, 1, 2, . . . , N}
pj,k(4h) = 0 otherwise.
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Then Pj(t +4h) satisfies

p0(t +4h) = p0(t) + µ14hp1(t) for j = 0,
pj(t +4h) = λj−14hpj−1(t) + (1− [λj + µj]4h)pj(t) + µj+14hpj+1(t)

for j = 1, 2, . . . , N − 1,
pN(t +4h) = λN−14hpN−1(t) + (1− µN4h)pN(t) for j = N.

The difference equations project forward in time. They can be also expressed in a
matrix form as

p(t +4h) = Pp(t), pj0(0) = 1, (3.1)

where the matrix P, P = (pij(4h)) is the transition matrix:
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..
.

..
.

..
.

. .
.

1
−
[λ

N
−

2
+

µ
N
−

2]
4

λ
N
−

24
h

0

..
.

..
.

..
.

..
.

..
.

..
.

µ
N
−

14
h

1
−
[λ

N
−

1
+

µ
N
−

1]
4

h
λ

N
−

14
h

..
.

..
.

..
.

..
.

..
.

..
.

0
µ

N
4

h
1
−

µ
N
4

h
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For our calculations we need to ensure that the matrix P is a stochastic matrix,
which means a nonnegative matrix where the row elements sum to one. Because of
this we assume that

maxj∈{1,2,...,N}{[λj + µj]4h} 6 1.

Zero si the only absorbing state in the discrete-time model, p00(4h) = 1 which is
equivalent for

lim
t→∞

p0(t) = 1

or we can say that the extinction of the population occurs with probability one.
Let T be the random variable for the time until the population extinction. The

distribution of T depends on the initial population size so we will denote this depen-
dence by Ty0 . Let ty0 denote the expected time until extinction or the mean persistence
time for the population size y0. This can be expressed as

τy0 = E(Ty0).

Let τr
y0

= E(Tr
y0
), r > 1 denote the r-th moment. Because τ0 = 0 and τr

0 = 0 for
r > 1 zero is an absorbing state. For an initial population size y0 ∈ {1, 2, . . . , N}
let the moment vectors for the persistence time denote as τ = {τ1, . . . , τN} and τr =
{. . . taur

1, . . . , τr
N} for r > 1.

For a small period of time 4h in the discrete time model p(t +4h) = Pp(t),
pj0(0) = 1, there can occurs either a birth or a death or no change in the population
size. The mean persistence time satisfies these difference equations

τj = λj4h(τj+1 +4h) + (1− [λj + µj]4h)(τj +4j) + µj4h(τj−1 +4h) (3.2)

where j = 1, 2, . . . , N. After multiplying the brackets

τj = λj4hτj+1 + λj4h2 + τj +4h− λj4hτj − λj4h2

−µj4hτj − µj4h2 + µj4hτj−1 + µj4h2

and substracting τj, λj4h2 and µj4h2, we get

0 = λj4hτj+1 +4h− λj4hτj − µj4hτj + µj4hτj−1

where after dividing the whole equation by4h

−1 = λjτj+1 − λjτj − µjτj + µjτj−1

we obtain the following simplified form of the difference equations.

λjτy+1 − [λj + µj]τy + µjτy−1 = −1, j = 1, . . . , N. (3.3)

This simplified relationship is based on the backward difference equation as opposed
to the forward difference equations mentioned in (3.3).

[1]
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3.2 Continuous-time Markov chain model

In the continuous-time Markov chain model t ∈ [0, ∞) and J(t) ∈ {0, 1, 2, . . . , N}.
For sufficiently small 4h the infinitesimal or endlessly small transition probabilities
pij(4t) are similar to those in the discrete-time Markov chain model. Also the transi-
tion matrix for this model assume

pj,j−1(4h) = µj4h + o(h) for j ∈ {1, 2, . . . , N}
pj,j+1(4h) = λj4h + o(h) for j ∈ {0, 1, 2, . . . , N − 1}

pj4h = 1− [λj + µj]4h + o(h) for j ∈ {0, 1, 2, . . . , N}
pj,k(4h) = o(h) otherwise.

It can be shown that probabilities

py(t) = Prob{J(t) = y}.

as4h→ 0 satisfies the forward Kolmogorov difference equations

dpy(t)
dt

= λj−1 py−1(t)− [λj + µj]py + µj+1 pj+1(t), y ∈ 1, 2, . . . , N,

dp0(t)
dt

= λ1 p1(t).

We can rewrite this system in the following matrix form as

dp(t)
dt

= Qp, pj0 = 1. (3.4)

Matrix Q = (qij) is here the infinitesimal generator matrix:
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Q
=

                                                0
0

0
..

.
..

.
..

.
..

.
..

.
..

.

µ
1
−
[λ

1
+

µ
1]

λ
1

..
.

..
.

..
.

..
.

..
.

..
.

0
µ

2
−
[λ

2
+

µ
2]

. .
.

..
.

..
.

..
.

..
.

..
.

0
0

µ
3

. .
.

λ
j−

1
..

.
..

.
..

.
..

.

..
.

..
.

..
.

. .
.
−
[λ

j
+

µ
j]

. .
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

µ
j+

1
. .

.
λ

N
−

3
0

0

..
.

..
.

..
.

..
.

..
.

. .
.
−
[λ

N
−

2
+

µ
N
−

2]
λ

N
−

2
0

..
.

..
.

..
.

..
.

..
.

..
.

µ
N
−

1
−
[λ

N
−

1
+

µ
N
−

1]
λ

N
−

1

..
.

..
.

..
.

..
.

..
.

..
.

0
µ

N
−

µ
N

                                                

Remark 3.2.1. By substracting Ip(t) from both sides of (3.1) and after dividing through
by4h, where the limit would be taken as4h→ 0 then we get

lim
4h→0

P− I
4h

= Q.
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The system of difference equations (3.1) may be considered a discrete-time approxi-
mation to the difference system (3.4). Approximation (3.1) have similar results as the
continuous-time model(3.4) if4h is sufficiently small. Zero is the only absorbing state
in (3.4) because q00 = 0. We can also see that

lim
t→∞

p0(t) = 1.

Continuous-time model (3.4) satisfies the relationship

τj = λj4h(τj+1 +4h) + (1− [λj + µj]4h)(τj +4h) + µj4h(τj−1 +4h) + o(4h)

which is very similar to relationship in (3.2) . For o(4h)→ 0 the only difference is the
addition of a term of o(4h) to the right side of the equation.1 The mean persistence
time therefore satisfies the same relationship as for the discrete time i.e. equation (3.3).
This equation follows from the backward Kolmogorov differential equations.

The equation (3.3) can be rewritten as a single matrix equation

Dτ = −1

where 1 = (1, . . . , 1)T, τ = (τ1, . . . , τN) and

D =


−[λ1 + µ1] λ1 0 . . . 0 0 0

µ2 −[λ2 + µ2] λ2 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . µN−1 −[λN−1 + µN−1] λN−1
0 0 0 . . . 0 µN −µN

 (3.5)

Matrix D is an irreducible diagonally dominant matrix and therefore nonsingular.
The solution for the mean persistence time is

τ = −D−11 (3.6)

which can be prooved using the factorisation method described in Appendix A.1. Be-
cause the matrix D is tri-diagonal we can get an explicit solution for τ. If we suppose
J(0) = j for j ∈ {1, 2, . . . , N}, then the mean persistence time satisfies [1]

τj =


1

µ1
+

N
∑

i=2

λ1 ...λi−1
µ1 ...µi

, for j = 1,

τ1 +
j−1
∑

s=1

[
µ1...µs
λ1...λs

N
∑

i=s+1

λ1...λi−1
µ1...µi

]
, for j = 2, . . . , N.

(3.7)

The equation above can be also simplified in the following form

τj =


1

µ1
+

N
∑

i=2

λ1...λi−1
µ1...µi

, for j = 1,

τ1 +
j−1
∑

s=1

[
1
λs

N
∑

i=s+1

λs ...λi−1
µs+1 ...µi

]
, for j = 2, . . . , N.

(3.8)

1In fact it is added three times.
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Example 3.2.1. In a linear case where

λj = jλ

µj = jµ

the formula for the mean persistence time satisfies

τj =


1
µ +

N
∑

i=2

(i−1)!λi−1

i!µi , for j = 1,

τ1 +
j−1
∑

s=1

[
s!µs

s!λs

N
∑

i=s+1

(i−1)!λi−1

i!µi

]
, for j = 2, . . . , N.

which can be also simplified in this form

τj =


1
µ +

N
∑

i=2

(i−1)!λi−1

i!µi , for j = 1,

τ1 +
j−1
∑

s=1

[
1
λs

N
∑

i=s+1

λi−1

iµi−s

]
, for j = 2, . . . , N.

Proposition 3.2.1. Let D and τ be given by (3.5) and (3.8). Then Dτ = −1.

Proof. We will multiply the matrix D (3.5) with τ for which we use the simplified
formula (3.8).
Let us denote

γ1 =
1
λj

N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi

then from the formula (3.8) we can express τ1 as

τ1 =
1
µ1

+
λ1

µ1
γ1.

From the formula (3.8) we also know that for j = 2, . . . , N − 1

τj = τ1 +
j−1

∑
s=1

[
1
λs

N

∑
i=s+1

λs . . . λi−1

µs+1 . . . µi

]

τj+1 = τ1 +
j

∑
s=1

[
1
λs

N

∑
i=s+1

λs . . . λi−1

µs+1 . . . µi

]
= τj +

j

∑
s=j

[
1
λs

N

∑
i=s+1

λs . . . λi−1

µs+1 . . . µi

]

= τj +
1
λj

N

∑
i=j+1

λj . . . λi−1

µj+1 . . . µi

Let us denote

γj =
1
λj

N

∑
i=j+1

λj . . . λi−1

µj+1 . . . µi
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for j = 1, . . . , N − 1.
Then we can write

τj+1 = τj + γj

where j = 1, . . . , N − 1 and τ is given by (3.8).
We start with the verification for index 1:

(Dτ)1 = (−λ1 − µ1)τ1 + λ1τ2

= (−λ1 − µ1)τ1 + λ1(τ1 + γ1)

= −µ1τ1 + λ1γ1

= −µ1

(
1
µ1

+
λ1

µ1
γ1

)
+ λ1

1
λ1

N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi

= −1− λ1
1

λ1

N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi
+

N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi

= −1−
N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi
+

N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi

= −1.

Then we continue with the j− th index for j = 2, . . . , N − 1:

(Dτ)j = µjτj−1 − (λj + µj)τj + λjτj+1

= −µj(τj − τj−1) + λj(τj+1 − τj)

= −µjγj−1 + λjγj

= −µj
1

λj−1

N

∑
i=j

λj−1 . . . λi−1

µj . . . µi
+ λj

1
λj

N

∑
i=j+1

λj . . . λi−1

µj+1 . . . µi

= −µj
1

λj−1

(
λj−1

µj
+

N

∑
i=j+1

λj−1 . . . λi−1

µj . . . µi

)
+

N

∑
i=j+1

λj . . . λi−1

µj+1 . . . µi

= −1− µj
1

λj−1

λj−1

µj

N

∑
i=j+1

λj . . . λi−1

µj+1 . . . µi
+

N

∑
i=j+1

λj . . . λi−1

µj+1 . . . µi

= −1.
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And finally we show the verification for the N − th index:

(Dτ)N = µNτN−1 − µNτN

= −µN(τN − τN−1)

= −µNγN−1

= −µN
1

λN−1

N

∑
i=N

λN−1 . . . λi−1

µN . . . µi

= −µN
1

λN−1

λN−1

µN

= −1

From the continuous-time model we can derive an expression for τr
j . The rth-order

moment can be expressed in terms of the (r− 1)th-order moment

λjτ
r
j+1 + [λj + µj]τ

r
j + µjτ

r
j−1 = −rτr

j (3.9)

for j = 1, 2, . . . , N (Goel and Richter-Dyn, 1974; Nisbet and Gurney, 1892; Norden,
1982).

This relationship (3.9) follows from the backward Kolmogorov differential equa-
tions. If r = 1 the equation (3.9) can be reduced to the equation derived from the
mean persistence time in (3.3) where τ1

y = τy. The difference equation (3.9) can be also
expressed in the matrix form as Dτr = −rτr−1 where the solution is

τr = −rD−1τr−1. (3.10)

Recursively we can find the r-th order moments by applying the operator −rD−1 to
the (r− 1) moment. Following these operations we can derive an explicit solution for
τj

r as in [1]

τr
j =


rτr−1

1
µ1

+ r
N
∑

i=2

λ1...λi−1
µ1...µi

τr−1
i , for j = 1,

τr
1 + r

j−1
∑

s=1

[
µ1 ...µs
λ1 ...λs

N
∑

i=s+1

λ1 ...λi−1
µ1 ...µi

τr−1
i

]
, for j = 2, . . . , N.

(3.11)

The simplified form of this formula is

τr
j =


rτr−1

1
µ1

+ r
N
∑

i=2

λ1 ...λi−1
µ1 ...µi

τr−1
i , for j = 1,

τr
1 + r

j−1
∑

s=1

[
1
λs

N
∑

i=s+1

λs ...λi−1
µs+1...µi

τr−1
i

]
, for j = 2, . . . , N.

(3.12)

Proposition 3.2.2. Let D and τr be given by (3.5) and (3.12). Then Dτr = −rτr−1.
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Proof. Because the previous Proposition was just a special case of this one the Proof
will be very similar. We will multiply the matrix D (3.5) with τr for which we use the
simplified formula (3.12).
Let us denote

γ1 = r
1
λj

N

∑
i=2

λ1 . . . λi−1τr−1
i

µ2 . . . µi

then from the formula (3.8) we τr
1 as

τr
1 =

rτr
1

µ1
+

λ1

µ1
γ1.

From the formula (3.12) we know that

τr
j = τr

1 + r
j−1

∑
s=1

[
1
λs

N

∑
i=s+1

λs . . . λi−1τr−1
i

µs+1 . . . µi

]

τr
j+1 = τr

1 + r
j

∑
s=1

[
1
λs

N

∑
i=s+1

λs . . . λi−1τr−1
i

µs+1 . . . µi

]
= τr−1

i + r
j

∑
s=j

[
1
λs

N

∑
i=s+1

λs . . . λi−1τr−1
i

µs+1 . . . µi

]

= τr
j + r

1
λj

N

∑
i=j+1

λj . . . λi−1τr−1
i

µj+1 . . . µi

Let us denote

γj = r
1
λj

N

∑
i=j+1

λj . . . λi−1τr−1
i

µj+1 . . . µi

for j = 1, . . . , N − 1.
Then we can write

τr−1
j+1 = τr

j + γj,

where j = 1, . . . , N − 1.
We start with the verification for index 1:

(Dτr)1 = (−λ1 − µ1)τ
r
1 + λ1τr

2

= (−λ1 − µ1)τ
r
1 + λ1(τ

r
1 + γ1)

= −µ1τr
1 + λ1γ1

= −µ1

(
r

τr−1
1
µ1

+ rλ1
λ1

µ1
γ1

)
+ λ1r

1
λ1

N

∑
i=2

λ1 . . . λi−1τr−1
1

µ2 . . . µi

= −rτr−1
1 − λ1

r
λ1

N

∑
i=2

λ1 . . . λi−1τr−1
1

µ2 . . . µi
+ rµ1

N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi

= −rτr−1
1 −

N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi
+

N

∑
i=2

λ1 . . . λi−1

µ2 . . . µi

= −rτr−1
j
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Then we continue with the j− th index for j = 2, . . . , N − 1:

(Dτr)j = µjτ
r
j−1 − (λj + µj)τ

r
j + λjτ

r
j+1

= −µj(τ
r
j − τr

j−1) + λj(τ
r
j+1 − τr

j )

= −µj
r

λj−1

N

∑
i=j

λj−1 . . . λi−1τr−1
1

µj . . . µi
+ λj

r
λj

N

∑
i=j+1

λj . . . λi−1τr−1
1

µj+1 . . . µi

= −µj
r

λj−1

(
λj−1τr−1

1

µj
+

N

∑
i=j+1

λj−1 . . . λi−1τr−1
1

µj . . . µi

)
+ r

N

∑
i=j+1

λj . . . λi−1τr−1
1

µj+1 . . . µi

= −rτr−1
1 − µj

r
λj−1

λj−1

µj

N

∑
i=j+1

λj . . . λi−1τr−1
1

µj+1 . . . µi
+ r

N

∑
i=j+1

λj . . . λi−1τr−1
1

µj+1 . . . µi

= −rτr−1
j

And finally we show the verification for the N − th index:

(Dτr)N = µNτr
N−1 − µNτr

N

= −µN(τ
r
N − τr

N−1)

= −µNγN−1

= −µN
r

λN−1

N

∑
i=N

λN−1 . . . λi−1τr−1

µN . . . µi

= −µN
r

λN−1

λN−1τr−1

µN

= −rτr−1
j
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Chapter 4

Numerical examples

4.1 Deterministic model

The deterministic logistic model satisfies the following differential equation

dy
dt

= λ(y)− µ(y). (4.1)

In the logistic model it is reasonable to assume birth and death rates to satisfy

λ(y) = λ1y + λ2y2 and µ(y) = µ1y + µ2y2

where λi and µi, i = 1, 2 are constants such that λi 6= µi. We can write

dy
dt

= (λ1y− λ2y2)− (µ1y + µ2y2),

dy
dt

= y(λ1 − µ1)− y2(µ2 − λ2),

dy
dt

= y(λ1 − µ1)

(
1− y

µ2 − λ2

λ1 − µ1

)
,

dy
dt

= y(λ1 − µ1)

1− y
λ1−µ1
µ2−λ2

 .

We denote

r = λ1 − µ1 and K =
λ1 − µ1

µ2 − λ2

where r is the rate and K is the capacity. Now we can rewrite the equation in the
following way

dy
dt

= yr
(

1− y
K

)
. (4.2)
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Lemma 4.1.1. A solution to differential equation (4.1) with initial condition y(0) = y0 is

y(t) = y0
Kert

K + y0(ert − 1)
, t ≥ 0. (4.3)

Proof. Proof is given in the Appendix A.2.

Figure 4.1 and 4.2 show how a deterministic solution can change if we fix r and K
and let the initial condition y0 to change.

Figure 4.1: Solutions for fixed r > 0. Figure 4.2: Constant solutions (r = 0).

Figure 4.1 shows the deterministic solution for r = 1 and K = 10 and Figure 4.2 for
r = 0 and K = 10. In both cases y0 changes from 0 to K in steps of 0, 5.

Figure 4.3 and 4.4 also show the deterministic solution for fixed r and K and chang-
ing y0. In 4.4 we take also y0 > K.

Figure 4.3: Solutions for fixed r < 0. Figure 4.4: Solutions also for y0 > K.
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Figure 4.3 shows the deterministic solution for r = −1, K = 10 and y0 changing from
0 to K in steps of 0, 5, Figure 4.4 for r = 1 and K = 10 where y0 changes from 0, 1 to
K + 5 in steps of 1.

We show an example where we consider the following birth and death rates. The
variable N is the number of states.

Example 4.1.1.

λ(y) = 2y− y2

50
and µ(y) = y +

y2

50
, N = 100. (4.4)

Figure 4.5: Parabola

Birth rate λ is positive only for

y(2− y
50

) ≥ 0⇔ y ∈ [0, 100]. (4.5)

Natural choice for the maximum number of states (population size) is therefore N =
100.
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Figure 4.6: Deterministic solution of Example 4.1.1

Figure 4.6 presents the deterministic solution for model with birth and death rates
given in (4.4).

4.2 Markov Chain Models

In this section we will compare two Markov chain models, the discrete and the con-
tinuous one. We will see that the two models generally agree well even for small
population sizes.

Two individual sample paths or stochastic realisations are graphed for each of the
two stochastic models and compared to the solution of the deterministic model when
the initial population size is y0 = 3.

The two following Figures 4.7 and 4.8 present the sample paths corresponding to
the discrete-time Markov chain model and the continuous-time Markov chain model.
The blue curves represents individual sample paths, black curve is the mean and two
magenta curves represents the mean plus minus the standard deviation. The sample
paths are graphed as continuous trajectories although they are not, they are discontin-
uous at the points where the process jumps to a new state.
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Figure 4.7: DTMC simulation result to Example 4.1.1.

Figure 4.7 shows the discrete-time Markov chain model for Example 4.1.1 with 3
sample paths and the mean of 10000 sample paths. Two trajectories hit zero earlier
than T = 20, they represent populations that died.
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Figure 4.8: CTMC simulation result to Example 4.1.1.

Figure 4.8 shows the continuous-time Markov chain model for Example 4.1.1 with
3 sample paths and the mean of 10000 sample paths. Again two displayed populations
died earlier than in T = 20.

These two simulations graphed by figures 4.7 and 4.8 show that the dynamics of
these two stochastic models are in close agreement even for small initial population
sizes.
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4.3 Mean Persistence Times

In this section we will compare two models with different birth and death rates. These
models will be referred to as Example A and Example B.

λ(y) = 1.35y− y2

20
and µ(y) = 0.35y +

y2

20
, N = 27. (A)

λ(y) = 2y− y2

20
and µ(y) = y +

y2

20
, N = 40. (B)

Mean persistence time for Example A and B are calculated using the equation (3.6),
equation (3.7) and the simplified equation (3.8) (which give the same output) and
compared to simulated results.

The smooth red curve represents the mean persistence time based on calcula-
tion mentioned above. The blue points represent the mean persistence times for the
discrete-time model and the magenta points represent the mean persistence times for
the continuous-time model.

Figure 4.9: Mean persistence times to Example A

Figure 4.9 shows the mean persistence times for Example A both for the discrete-
time and the continuous-time model. The individual mean persistence times are com-
puted from 10000 extinct trajectories.
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Figure 4.10: Mean persistence times to Example B

Figure 4.10 show the mean persistence time for Example B again both for the
discrete-time and the continuous-time model. The individual mean persistence times
are computed from 10000 extinct trajectories.

The mean persistence times differs by a factor of 10 in these two examples from a
maximum of about 400 in Example A to about 40 in Example B.
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The following figures 4.11 and 4.12 compare the two deterministic forms of the
solutions of the mean persistence time (3.6) and (3.8). The blue smooth line is the
error between the deterministic solutions.

Figure 4.11: Error between (3.6) and (3.8)
for Example A

Figure 4.12: Error between (3.6) and (3.8)
for Example A

Figure 4.11 is the difference between the deterministic solution for Example A com-
puted using equation (3.6) and (3.8). Figure 4.12 is the difference between the deter-
ministic solution for Example B computed using equation (3.6) and (3.8). The first
version for Example A differs at the order of 10−11, the second version for Example B
differs at the order of 10−13. These small differences are numerical errors that arose
from the matrix inverse in (3.6) or from the recurrent formula (3.8).

In Figures 4.13 and 4.14 the standard deviation for the two stochastic models is
graphed. The standard deviation is calculated assuming equation (3.10) for√

τ2
y − (τy)2, r = 2. (4.6)

The smooth red curve represents the standard deviation based on calculation men-
tioned above. The blue curves represent the standard deviations for the discrete-time
model and the magenta curves for the continuous-time model. The two green curves
are simulated standard deviation± deterministic standard deviation computed using
equation (4.6).
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Figure 4.13: Simulation result to Example A

Figure 4.13 shows the standard deviation for Example A both for the discrete-time
and the continuous-time model. The individual standard deviations are computed
from 10000 extinct trajectories.
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Figure 4.14: Simulation result to Example B

Figure 4.14 shows the standard deviation for Example B again both for the discrete-
time and the continuous-time model. The individual standard deviations are com-
puted from 10000 extinct trajectories.

Also here can be seen an order of magnitude difference between the standard de-
viations in the two cases.
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Chapter 5

Conclusion

The majority of stochastic population models in biological applications are continu-
ous in time. However, many population modelling efforts prioritize the discrete-time
models, where the populations have non-overlapping generations. In these models,
the discrete-time formulations are more biologically realistic.

There exist some advantages of the discrete-time model over the continuous-time
model. For example, the discrete-time model is often easier to formulate from the so
called first principles (simple discrete rules) and is also simpler understood than the
continuous-time models.

Computational ease may be an important consideration in deterministic model
behaviour. The discrete-time model has also some numerical advantages over the
continuous-time model by projecting forward in time using the transition matrix and
calculation of the probability distribution is straightforward. In the continuous-time
model the probability distribution can be estimated via simulations of a large number
of sample paths. The problem is that to attain a good estimation may require a very
large number of sample paths and many more numerical computations than in the
discrete-time model. On the other hand, when we consider several interacting popu-
lations, the advantages of the discrete-time model may disappear.

The aim of this thesis was to introduce stochastic birth and death processes, sum-
marise the informations obtained from various sources and compare the stochastic
processes with the use of simulations. We considered two models, discrete-time and
continuous-time Markov chain models. We provided a closed form solution and a re-
current solution for the mean persistence times together with their higher moments,
in particular with the variance or standard deviation. We compared the theoretical
results with numerical simulations.
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Appendix A

Appendix

A.1 The factorisation method for a 3-diagonal matrix

We assume a system of n linear algebraic equations A ∗Y = F in the following form
c1 −b1 f1
−a2 c2 −b2 f2

...
...

...
−an−1 cn−1 −bn−1 fn−1

−an cn fn

 (A.1)

We denote

αn−1 =
an

cn

βn−1 =
fn

cn
.

The last two equations can be written in the form (the last one is divided by cn):

−αn−1yn−1 + yn = βn−1

−an−1yn−2 + cnyn−1 − bn−1yn = fn−1bn−1

−an−1yn−2 + (cn−1 − αn−1 − bn−1)yn−1 = fn−1 + βn−1bn−1

We can rewrite it (the equation divided by the coeficient at yn−1 ) in the form of

αn−2yn−2 + yn−1 = βn−2

where

αn−2 =
an−1

cn−1 − αn−1 − bn−1

βn−2 =
fn−1 + βn−1bn−1

cn−1 − αn−1 − bn−1
.
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For n = 3 (the first equation is multiplied by b1):

α1y1 + y2 = β1

c1y1 − b1y2 = f1

y1(c1 − α1b1) = f1 + β1b1

y1 =
f1 + β1b1

c1 − α1b1

Then the forward recurrence is:

yn = βn−1 + αn−1yn−1

The algorithm:
1. BACKWARD RECCURENCE:

αn−1 =
an

cn

αi =
ai+1

ci+1 − αi+1bi+1

for i = n− 2, n− 1, . . . , 2, 1.
Where for each right hand side F we calculate:

βn−1 =
fn

cn

βi =
fi+1 + βi+1bi+1

ci+1 − αi+1bi+1

for i = n− 2, n− 1, . . . , 2, 1, 0.
2. FORWARD RECCURENCE:

y1 = β0

yi = βi−1 + αi−1yi−1

for i = 2, 3, . . . , n.

In our case we assume a system of n linear algebraic equations A ∗Y = F where A
is matrix −D (3.5) and F will be an identity matrix (we take column after column).

In this specific case we know that:

αi = 1

for i = 1, . . . , n− 1 which very simplifies the calculations.

β = 0
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until we get to the row where fi = 1 in the column of the identity matrix. From this
point β will be nonzero.

The algorithm:
1. BACKWARD RECCURENCE:

αn−1 = 1
αi = 1

for i = n− 2, n− 1, . . . , 2, 1.
Where for each right hand side F we calculate:

βn−1 =
fn

µn

βi =
fi+1 + βi+1λi+1

µi+1

for i = n− 2, n− 1, . . . , 2, 1, 0.
2. FORWARD RECCURENCE:

y1 = β0

yi = βi−1 + yi−1

for i = 2, 3, . . . , n. The factorisation method for a 3-diagonal matrix was derived using
the lecture notes for numerical methods 1.

1http://trial.zcu.cz/
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A.2 The proof of Lemma 4.1.1.

Proof. We check that (4.3) satisfies the differential equation

dy
dt

= y0
Krert[K + y0(ert − 1)]− Kert[ry0ert]

[K + y0(ert − 1)]2

= y0
K2rert − Kry0ert

[K + y0(ert − 1)]2

= y0
(K− y0)Krert

[K + y0(ert − 1)]2

= y(t)
(K− y0)r

K + y0(ert − 1)

= ry(t)
K + y0(ert − 1)− y0ert

K + y0(ert − 1)

= ry(t)
(

1− y(t)
K

)
y(0) = y0

K
K + y0(1− 1)

= y0

Remark A.2.1. To find (4.3) we can use the variation of constants

∫ dy
y
(
1− y

K

) = r
∫

dt∫
(

1
y
− 1

y− K
)dy = r

∫
dt

ln| y
y− K

| = rt + c1

| y
y− K

| = c2ert

y = |y− K|c2ert

y(c2ert − 1) = Kc2ert

y =
Kc2ert

c2ert − 1
(A.2)

Then we consider the initial condition

y0 =
Kc2

c2 − 1
y0(c2 − 1) = Kc2

c2y0 − y0 = Kc2
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c2 =
y0

y0 − K
(A.3)

Then we set equation (A.3) into (A.2) and we get

y =

Ky0ert

y0−K
y0ert

y0−K − 1

=
Ky0ert

y0ert − y0 − K

= y0
Kert

K + y0(ert − 1)

A.3 Description of the thesis attachment

The at tached CD conta ins :

/Matlab/Chapter_ / . . . . . . . . . . . . inc ludes Matlab s c r i p t s sor ted by t h e i r use
in chapters .

/Matlab/Data / . . . . . . . . . . . . . . . . mat f i l e s with pre−generated data .
/Source_Latex / . . . . . . . . . . . . . . . LATEX f i l e s used f o r generat ing the t h e s i s .
/Graphics/Chapter_ / . . . . . . . . . . f i g u r e s t h a t are presented in the t h e s i s

sor ted by the appearance in chapters
( png . formats ) .

CD root d i r e c t o r y :

Lata lova_Thes is . . . . . . . . . . . . . the Bachelor t h e s i s .
Readme . t x t . . . . . . . . . . . . . . . . . . . t h i s t e x t f i l e .
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