
University of West Bohemia in Pilsen

Faculty of Applied science

Department of Cybernetics

Diploma thesis

Rotating machines

diagnostics with use of

LabView

Plzen 2013 Karel Kalista



Statement

I hereby submit for review and defense the diploma thesis, prepared at the

end of study at the Faculty of Applied Science University of West Bohemia. I

declare that I prepared this diploma thesis independently, using professional

literature and resources listed in the list, which is part of this thesis. I also

declare that all the software used to solve this thesis is legal.

In Pilsen, on May 18, 2013

..........................



Acknowledgement

I would like to express my sincere appreciation to my supervisor, Ing. Jin-

d°ich Li²ka, Ph.D., for his support, care, encouragement and enthusiastic

supervision throughout my study. His extensive discussions around my work

and interesting explorations helps me to resolve problems which seemed to be

insuperable.Under his guidance, I have gained not only valuable knowledge

but also the logical way of thinking to deal with problems e�ectively.

I am very grateful to Ing. Ingrid Hochmannová who gave me many relevant

references and also provided experimental data and communication with the

submitter Areva GmbH.

My thanks are also due to Dr.-Ing. Francis Fomi Wamba, as a representative

member of the submitter, who discussed the submission and brought relevant

suggestions and comments to the �nal application implemented in LabView.

I would like to thank to my colleague and friend Ing. Miroslav Ji°ík who hel-

ped me to understand some issues concerning clustering and classi�cation.

I am indebted, forever, to my parents and brother, for their understanding,

unconditional love and endless encouragement.



Anotace

Práce pojednává o diagnostice rota£ních stroj·, jmenovit¥ o v¥trných elek-

trárnách. Práce p°iná²í informace o uspo°ádání o�shore v¥trných elektrár-

nách, které jsou umíst¥né na v¥trné farm¥ Alpha Ventus. Dále je objasn¥n

význam údrºby na základ¥ sledování stavu za°ízení a také obecná struktura

monitorovacích systém·. V práci je také uvedeno n¥kolik nejvýznamn¥j²ích

typ· poruch spolu se symptomy, kterými se projevují.

Druhá £ást práce popisuje proces zpracování dat s d·razem na získání cha-

rakteristických parametr· z vibra£ních dat a jejich následnou redukci pouze

na ty nejvíce relevantní. Na základ¥ uvedených poznatk· byl navrºen zp·sob,

jak poruchy diagnostikovat.

V praktické £ásti jsou popsány experimentální vibra£ní data a je uvedena p°í-

padová studie. Dále je na datech otestován navrºený postup pro diagnostiku

poruch. Na záv¥r je uveden návod k aplikaci vytvo°ené v LabView, pomocí

které bylo moºné data analyzovat.

Klíčová slova

údrºba na základ¥ sledování stavu, monitorovací systémy stavu, poruchy ro-

ta£ních stroj·, Fourierova transformace, redukce p°íznak·, detekce poruch,

klasi�kace



Abstract

Presented work deals with rotating machines diagnostics, namely wind tur-

bines. The paper provides information about the con�guration of speci-

�c o�shore wind turbines placed in the wind farm Alpha Ventus. Further,

the meaning of condition-based maintenance is explained and the general

structure of health monitoring system is described as well as the most com-

mon faults in conjunction with their symptoms.

The following part explains the data processing with a view to feature ex-

traction from vibration data and feature reduction to identify the most rele-

vant ones. Based on introduced knowledge, a technique for fault diagnostics

is suggested.

In the practical part, the experimental vibration data are examined and a

case study based on real data is presented and the proposed diagnostic ap-

proach is tested. Finally, a guide to the application implemented in LabView,

which provided the data analysis, is introduced.

Keywords

condition-based maintenance, health monitoring system, rotating machines

faults, vibration, Fourier transform, feature reduction, fault detection, pat-

tern classi�cation
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1 Introduction

Renewable energy is currently very popular topic, especially in relation to

the global fear of nuclear energy. It helps to bring new investments and

money into this branch to make it maximally e�ective. Currently, many

wind turbines are under construction and many were already built o�shore

or onshore. Since the investments at the beginning are not small as well as

cost of maintenance, a great demand on turbine reliability and availability

exists because it is the only way to make wind power more competitive.

One of the possibilities to ensure e�ective turbine running is to prevent unex-

pected failures, which may cause long downtime and even large turbine dam-

age. That can be provided via time monitoring of various features and subse-

quently an expert analysis is performed. Both these tasks are required to be

carried out automatically without human interference, ideally on the turbine

station. These Health Monitoring System (HMS) automatically check health

condition of wind turbine and detects fault, its location or type and assess the

fault severity. The diagnostics information is subsequently used in schedul-

ing preventive maintenance or urgent one to prevent serious failure. Hence,

health monitoring systems play an important role in the operation of rotat-

ing machinery, including improving safety, increasing e�ciency and lifetime,

and reducing downtime and total costs. Nevertheless, the mentioned bene-

�ts can be achieved only when fault diagnosis provides reliable information

on machine health conditions. If incorrect diagnosis results are generated

frequently, ine�ective maintenance may be arranged and the health moni-

toring system make no sense. Therefore, it is necessary to accentuate the

case analysis during own development to maximally improve the quality of

fault diagnosis. This work may represent the �rst step just in analysing the

speci�c situation. The con�guration of a speci�c wind turbine is described

along with vibration measurement facilities. Further, the particular faults

are described in conjunction with theirs symptoms and a suggestion of fault

diagnostic approach is introduced. In the practical part, the case study based

on real data is described and proposed diagnostic approach is tested.
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2 Background

2.1 Wind turbine

Wind turbines are energy converters. Independently of their application,

type or detailed design, all wind turbines have in common that they convert

the kinetic energy of the �owing air mass into mechanical energy of rotation

[9].

To maximally exploit the wind energy potential of favourable locations, the

wind turbines form groups also called wind farms. Such a wind farm can

consist of hundreds of wind turbines and occupy area of hundreds of square

kilometres onshore or o�shore.

2.1.1 Alpha Ventus Wind Farm

Alpha Ventus (also known as Borkum West) is the �rst o�shore wind farm

built in Germany. It is situated in the North Sea north of the island Borkum

and it was commissioned on April 27, 2010. The park consists of twelve

wind turbines of which six turbines are 5 Megawatt (MW) Areva Multibrid

M5000. The farm is controlled via the control centre in the town of Nordern.

The rated output of the wind farm is 60 MW.

The Alpha Ventus o�shore wind farm is located in the open sea with a water

depth of about 30 meters and a distance from the coast of 60 kilometres. This

location guarantees excellent wind condition, however, the water depths, the

aggressive salt-laden air, the strong and often gusty winds and the swell to-

gether add up to extreme demands on the installation logistics, construction,

operation and as well maintenance [5].
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2.1.2 Areva Multibrid M5000

Multibrid M5000 is a new platform of o�shore wind turbines, which was

developed in AREVA Wind GmbH (basic information can be found in Ap-

pendices A). It contains all typical components such as:

� rotor (rotor blades, aerodynamic brake and hub);

� drive train (rotor shaft, bearings, brake, gearbox and generator);

� yaw system between nacelle and tower (yaw bearing and yaw drive);

� supporting structure (tower and foundation);

� electrical components for control and grid connection.

Detail description of each component can be found e.g. in [9]. In following

sections, the speci�c information about components of Multribrid M5000

is given. Especially about components which are signi�cant for vibration

analysis or which are special.

Figure 2.1.1: Multirbid M5000 [9]
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2.1.2.1 Planetary gearbox

The �rst simple planetary gearing could be found already in ancient Greek.

At present, the ancient idea was brought to perfection to obtain the best

e�ectiveness. Main parts of planetary (epicyclic) gearbox are:

� outer ring gear;

� planet gears;

� sun (central) gear.

Planet gears are revolving about the sun gear and are usually mounted on a

carrier, which is driven by input torque and itself rotates relative to the sun

gear, which provides the output torque. The ring gear is �xed and meshes

with the planet gears.

Planetary gearbox can by classi�ed into:

� simple gearbox - one sun, one outer ring gear, one carrier and one

planetary set;

� compound gearbox - involve more sophisticated structure involving

more parts mentioned above.

In comparison with the simple planetary gearbox, the compound one reaches

larger reduction ratio and higher torque-to-weight ration. Moreover, the

con�guration is more �exible.

In case of Multibrid M5000, the compound stepped-planet planetary gearbox

shown in Figure 2.1.2 is used. This con�guration is characteristic by a shaft

connection between two di�erently-sized planet gears in each planet train.

The large one engages the sun, while the small one engages the outer ring.

This constitution achieves smaller step changes in gear ratio, when the overall

package size is limited.

4
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Figure 2.1.2: Typical con�guration of stepped planet gear

2.1.2.2 AeroDrive

The Voith's AeroDrive is placed in the driveline of the wind turbine between

the main gearbox and the generator. Its goal is to convert the changing speed

in the rotor and the gearbox into a constant speed for the generator. The

heart of this technology is a variable-speed hydrodynamic gearbox whose two

main components are:

� planetary gear (superposition gear);

� hydrodynamic torque converter (WinDrive).

In Figure 2.1.3, the con�guration of the driveline of the wind turbine is shown.

5
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Figure 2.1.3: AeroDrive concept [6]

More detail information about WinDrive and its function can be found in

Appendices B or in References [10], [6], [15].

The main advantages and bene�ts of WinDrive technology are:

� A standard synchronous generator directly connected to the grid pro-

duces electricity in a grid-friendly manner and with power plant quality.

� There is no frequency converter in the wind turbine as WinDrive re-

places the power electronics that are failure prone.

� The WinDrive dampens dynamic loads that occur in the driveline and

thus extends the lifetime of other driveline components.

� The WinDrive has a long lifetime - longer than the lifetime of the wind

turbine itself.
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2.1.2.3 Transducers

All parameters, in which vibration can be expressed (displacement, velocity,

acceleration), can be measured by transducers, which can be classi�ed in:

� absolute vibration measurement transducers;

� relative vibration measurement transducers.

It is necessary to determine which of those transducers are used for the vibra-

tion measurement and also specify their position. Nevertheless, most of the

displacement transducers measure relative displacement, whereas the most

common velocity and acceleration transducers measure absolute motion.[13].

All vibration sensors measure motion along their major axis. This fact should

be taken into account when choosing the number of sensors to be used. Due

to the structural asymmetry of machine cases, the vibration signals in the

vertical, horizontal and axial directions (with respect to the shaft) may dif-

fer. In addition, measurements should be taken at exactly the same location

to enable direct comparisons of data sets. Moving the probe only a small

distance on a machine can produce drastically di�erent vibration levels [14].

Therefore, it is tricky to compare vibration data from two di�erent machines

although they are of the same type.

Another very important aspect is the frequency range of transducers which

must corresponds to usage and requested application.

Figure 2.1.4: Vibration transducers - frequency range

7
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Multibrid M5000 is equipped with 16 sensors providing vibration measure-

ment. In Figure 2.1.5, the location of particular transducers is shown.

Figure 2.1.5: Location of sensors - Multribrid M5000

Speed is measured by a shaft encoder which generates a series of pulses at

equal angular intervals. These series are converted into speed signal. Typical

pulse count per revolution is 1024 (power of two), however, Multibrid M5000

is equipped with a 120-pulses-per-revolution encoder. The conversion to

rotating speed is already carried out on the side of the data provider, therefore

this work does not deal with it.

8
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chan variable name component

00 force HL_Bridge

gearbox

drive shaft

planet gears

01

displacement

HL_weg_pos0

rotor bearing
02 HL_weg_pos90

03 HL_weg_pos180

04 HL_weg_pos270

05 acceleration Gondel - -

06 unde�ned - - -

07 unde�ned - - -

08

acceleration

HL_acc0

gearbox

drive shaft

09 HL_acc90 planet gear

10 HL_acc180 rotor bearing

11 HL_acc270 drive shaft bearing

12 PLST_1

planet gear

ring gear meshing

drive shaft bearing

13 PLST_2

planet gear

drive shaft

sun gear meshing

drive shaft bearing

14 Gen_1

generator

drive shaft

drive shaft bearing

15 Gen_2

drive shaft

drive shaft bearing

generator bearing

Table 2.1.1: Wind turbine Multibrid M5000 - sensors
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2.2 Maintenance and health monitoring

To optimise running of machines, health monitoring systems and new main-

tenance strategies are developed to provide following bene�ts:

� increase in machine productivity;

� extend intervals between overhaul;

� minimize the number of overhaul;

� improve repair time;

� increase machine life;

� improve product quality;

� save maintenance cost.

The general health monitoring structure is already de�ned by International

Standard Organisation (ISO) standards as well as maintenance principles.

This section focuses on the branch of wind turbines and provides an overview

of the way to ensure the bene�ts mentioned above.

2.2.1 Conditional-based maintenance

The goal of developing health monitoring systems is to enable Condition

Based Maintenance (CBM), which constitutes a new maintenance paradigm.

CBM has the potential to signi�cantly reduce the cost of maintenance while

the realiability and availability of the turbine is increased. Common mainte-

nance strategies are:

� Reactive maintenance ("run-to-break");

� Preventive maintenance ("time-based");

� Predictive maintenance (CBM).

Reactive maintenance allows the equipment to run until it fails without

maintenance intervention. This maintenance strategy ensures maxi-

mum operating time between shutdowns but also yields low reliability

10
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and high cost due to missed opportunities to detect and repair faults,

secondary damage (progression of failure to severe sate), large logistics

footprint to cope with unexpected failures, and lost production while

equipment awaits repair.

Preventive maintenance can improve equipment reliability (number of

failures) by periodically overhauling equipment before it wears out. To

avoid unexpected failures in equipment that has an uncertain service

life, preventive maintenance must be performed well in advance of the

mean time to failure. Consequently, preventive maintenance achieves

high reliability at the cost of performing premature maintenance. It

leads to frequent interruption of production for planned maintenance,

high labor costs, and high parts usage.

Conditional based maintenance enables high equipment reliability and

low maintenance costs by eliminating the need for unnecessary overhaul

activities while simultaneously allowing repairs to be performed on a

planned basis. Detection of faults in their early stages provides an op-

portunity to order parts, schedule personnel, shutdown the equipment

before serious damage occurs, and minimize downtime. However, this

strategy requires having access to reliable condition monitoring tech-

niques, which not only are able to determine current condition, but

also give reasonable predictions of remaining useful life [13].

Figure 2.2.1: Cost of maintenance
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2.2.2 Information flow structure

A combination of technologies should determine the cause and severity of

possible faults and provide the justi�cation for operations and maintenance

actions.

In Figure 2.2.2, the recommended structure of data processing is shown.

Particular task bay be carried out manually or automatically in order to

implement condition monitoring successfully. The data �ow starts with data

acquisition block, where the monitoring con�guration is speci�ed for various

sensors monitoring the equipment. Data transfer must be ensured among

particular blocks and also external system (e.g. archive). The content of this

section is based on ISO standards [1], [3] and [4].

Figure 2.2.2: Data processing and information-�ow diagram

Data acquisition block converts an output from the transducer to a digi-

tal parameter representing a physical quantity and related information

such as the time (Coordinated Universal Time (UTC), local), calibra-

tion, data quality (e.g. "good", "bad", "unknown", etc.) and sensor

con�guration. It can be generalized to software module providing sys-

tem access to digitized data and interface to a smart sensor.

12
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Data manipulation block provides signal processing and analysis to com-

pute meaningful descriptors (features) of interest in the machine condi-

tion monitoring and diagnostic process. It may contain processing func-

tions such as Fast Fourier Transform (FFT), Order analysis, Wavelets

etc.

State detection block compares outputs from preceding blocks against

expected baseline pro�le values or operational limits, in order to gen-

erate enumerated state indicators ("alert", "alarm", etc.) with respect

to boundary exceeding.

Health assessment block diagnoses any faults and rates the current health

of the equipment or process, considering all state information from pre-

ceding blocks. This block contains speci�c assessment method(s) to

generate current health grade and diagnose faults and failures with as-

sociated likelihood probability with respect to operational context. In

addition, it may generate recommendations, evidence and explanation.

Prognostic assessment block determines future health states and failure

modes based on the current health assessment and projected usage

loads on the equipment and/or process, as well as remaining useful

life predictions. To aid the assessment, the prognostic algorithm may

use model based information, historical failure data and operational

history.

Advisory generation block integrates information from all preceding and

external blocks to provide optimized recommended actions and alterna-

tives to applicable personnel or system. Recommendations may include

prioritized operational and maintenance actions and capability forecast

assessments or modifying operational pro�les to allow mission comple-

tion.

13
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2.2.3 Condition-based monitoring techniques

Condition monitoring includes many techniques, such as:

� Vibration monitoring

� Acoustic monitoring

� Oil analysis

� Particle analysis

� Corrosion analysis

� Thermography

� Performance monitoring.

This paper is focused only on vibration monitoring. Some aspects of this

monitoring technique are mentioned in following paragraph.

2.2.3.1 Vibration monitoring

As mentioned above, health monitoring system includes many subsystems,

but vibration monitoring is one of the most important. The major advantage

is that vibration monitoring can detect the health condition of rotating com-

ponents such as main bearing, gearbox and generator and identify developing

problems before they becomes too serious.

Even in good condition, machines generate vibrations, which can be described

with vibration levels such as Root Mean Square (RMS), mean, etc. Moreover,

many such vibrations are directly linked to periodic events in operations of

machine such as rotating shafts, meshing gear teeth, rotating electric �elds,

and so on. The frequencies with which such events repeat often gives a direct

indication of the source and thus many powerful diagnostic techniques are

based on frequency analysis [13].

All those types of vibration and their levels create together a speci�c vibra-

tion signature. While a fault is developing, the machine vibration signature is

changing in a way that can be related to the fault. Vibration analysis helps to

read this signature and its changes and detect the faults. That can be done

14
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e.g. by trending vibration levels in time. Changes in trend may indicate

developing fault. However, behaviour of vibration is not stationary because

it is dependant on parameters such as operating load, rotational speed and

dynamic sti�ness. Therefore, the trend analysis (vibration analysis in gen-

eral) must be carried out in respect to operating conditions. Fundamental

methods for vibration analysis are described in Chapter 3.

2.3 Rotating machines faults

In this section, the most common faults on rotating machines are introduced.

Usually, short description and the most signi�cant symptoms are given. In-

formation in more detail can be found in [12],[13] and [14].

2.3.1 Unbalance

Unbalance (imbalance) is de�ned by ISO as:

Condition which exists in a rotor when vibration force or motion is imparted

to its bearings as a result of centrifugal forces [2].

In other words, unbalance happens when the local Centre of Mass (CoM)

of the cross-section is not at the centre of rotation.

The unbalance force generating vibration is expressed as:

𝐹 = 𝑚 · 𝑟 · 𝜔2, (2.3.1)

where

𝑚 - mass,

𝑟 - radial displacement of the CoM from the centre of rotation,

𝜔 - rotational speed of shaft.
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Then

unbalance vibration =
unbalance force
dynamics sti�ness

. (2.3.2)

Figure 2.3.1: Unbalance description

Usually, all types of unbalance signi�cantly excite 1X of radial vibrations and

its amplitude varies proportional to the square of the shaft speed. However,

the sti�ness of the bearings support is usually nonlinear, therefore other

higher harmonics may be also excited. Di�erent types of unbalance can be

distinguished by phase analysis of 1X.

2.3.2 Misalignment

When two or more shafts are coupled together, a misalignment may occur

in vertical or horizontal direction. Basic types of misalignment may happen,

namely:

� parallel misalignment;

� angular misalignment.

Pure parallel or angular misalignment is rare. Usually, a combinations of

both mentioned types of misalignment are encountered.

16



Background Rotating machines faults

Figure 2.3.2: Misalignment

Angular misalignment primarily excites 1X of axial vibration whereas parallel

one usually results in 2 hits per cycle and therefore 2X of radial vibration is

excited. As mentioned above, conjunction of both types is often encountered.

Then the dominant harmonics (1X or 2X) determine the type of misalign-

ment.

When misalignment becomes severe, it can generate high amplitude peaks

at much higher harmonics (3X to 8X) or even whole series of high-frequency

harmonics.

2.3.3 Bent shaft

Bent shaft generates high vibration and creates a lot of stress on other com-

ponents. A permanent shafts bow produces similar response as a combina-

tion of unbalance and misalignment (especially angular one). Axial vibration

measurement on one of the bearings usually reveals excited 1X and 2X of the

rotating speed. If the:

� amplitude of 1X is dominant then the bow is near the center of the

shaft

� amplitude of 2X is dominant then the bow is closer to the coupling.
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Figure 2.3.3: Bent shaft

The way to distinguish bent shaft from misalignment or unbalance is vibra-

tion phase measurement because the bent shaft is usually 180∘ out of phase

in the axial direction.

2.3.4 Cracked shaft

A cracked shaft is one of the most serious fault, which can occur in a rotating

machine, and it can be a cause of consequent failure and large damage of

the whole equipment. The existence of a crack usually causes a signi�cant

change in the machine dynamic sti�ness as well as in the normal vibration

level. However, even a large crack has only a small e�ect on the natural

frequencies of the shaft and almost none when the crack is closed. Therefore,

the change of amplitude and phase of vibration harmonics is the symptom

that must be monitored.

The type of crack depends on the shafts attributes and its classi�cation is

complicated. However, two most general groups of cracks can be speci�ed:

� permanently open cracks;

� opening and closing cracks.

A crack can open and close during one revolution usually because of bow

due to gravity. This behaviour a�ects primarily the �rst three harmonics

of the shaft speed. Hence, it can be easily distinguished from unbalance or

misalignment. In comparison, the permanently open crack a�ects especially

the �rst and second harmonics, therefore, the phase analysis is necessary to
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distinguish it from unbalance or misalignment.

Another suitable way to determine a crack is monitoring of features while

speed is running up or down because the in�uence of a crack is more evident.

Figure 2.3.4: Closing and opening crack

2.3.5 Ecentricity

Eccentricity occurs when the center of rotation is at an o�set from the ge-

ometric centerline of a sheave, gear, bearing, motor armature or any other

rotor. The 1X of rotation speed of the eccentric component is excited to

maximum amplitude in a direction through the centres of the two rotors,

as shown in Figure 2.3.5. Here the amplitude varies with the load even at

constant speeds.

In comparison to unbalance, when the transducer is moved from the verti-

cal to the horizontal direction, a phase shift of 90∘ is observed. However in

eccentricity, the phase readings di�er by 0 or 180∘ when measured in the

horizontal and vertical directions.
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Figure 2.3.5: Eccentricity

2.3.6 Looseness

Looseness is normally caused by an improper �t between component parts. In

rotating machines, di�erent types of looseness can occur and produce many

peaks in FFT spectrum due to its non-linearity. Many harmonics and also

subharmonics (multiples of one half and one third of 1X, usually produced in

bearings) are excited. Nevertheless, the phase behaviour is also non-linear,

hence looseness can be distinguished from other mentioned faults such as

unbalance or misalignment.

Figure 2.3.6: Bearing - looseness can occur between particular parts
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2.3.7 Cocked bearing

A cocked bearing is a form of misalignment and appears when bearings are

not accurately aligned with the shaft. Such cocked bearings usually produces

considerable axial vibration, although the assembly is balanced. Harmonics

1X, 2X and 3X are excited. The cocked bearing can be distinguished from

other types of faults by phase analysis because a twisting motion is caused

with approximately 180∘ phase shift from the top-to-bottom [14].

Figure 2.3.7: Cockded bearing

2.3.8 Rubbing

Rubbing phenomena occurs when the rotor rubs a stationary element. The

impacts produce vibrations at the fundamental rotational frequency and its

harmonics. The generated spectrum is similar to mechanical looseness, which

is described in Section 2.3.6. Rubbing can be classi�ed as:

� partial rubbing;

� rubbing throughout whole cycle (full annular rubbing).

Unfortunately, rubbing produces high frequencies similar to white band noise,

therefore rubbing detection from FFT amplitude spectrum may be di�cult.

Therefore, the time-frequency domain methods are usually used. Another

good indicator of rubbing is truncated waveform due to rub shown in Figure

2.3.8 and also orbit analysis.

21



Background Rotating machines faults

Figure 2.3.8: Truncated waveform due to rubbing

2.3.9 Bearing clearance

Bearing clearance exists between rolling elements (balls) and the inner and

outer races of the bearing. It expresses the measure of the geometrical space

between those parts.

High clearance in journal bearings in late stages can normally excite a whole

series of running speed harmonics, which can be up to 10X or 20X. The FFT

spectrum looks very much like that of looseness.

Figure 2.3.9: Clearance - a) axial, b) moment, c) radial
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2.3.10 Gearing defects

In case of a gearbox, the spectrum can show the low harmonics as well as

high harmonics. The reason is that the Gear Mesh Frequency (GMF) is a

product of the number of teeth and rotating speed:

𝐺𝑀𝐹 = number of teeth on pinion× pinion speed in RPM (2.3.3)

The spectrum usually show 1X and 2X of the speed, along with the GMF.

Moreover, the GMF will have running speed sidebands relative to the shaft

speed to which the gear is attached. These sidebands around GMF and its

harmonics are quite common. Hence, the gearbox spectrum contains a range

of frequencies due to di�erent GMFs and their harmonics. If the gearbox is

in a good condition, all peaks have low amplitudes and no natural frequencies

are excited.

Figure 2.3.10: Normal gears spectrum

Gear tooth wear

When gear tooth wear occurs, natural frequencies are excited with sidebands,

which are spaced with the running speed of the bad gear. The amplitude of

sidebands around GMF is usually high, however the GMF amplitude may

stay unchanged. Therefore, the sidebands are more suitable indicator of

tooth wear than the GMF itself.
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Gear tooth load

The GMF amplitude may increase in conjunction with the gearbox load,

therefore, high GMF amplitudes do not necessarily indicate a trouble, es-

pecially if sideband frequencies remain low and no gear natural frequencies

are excited. Hence, it is recommended to carry out vibration analysis on a

gearbox when is transmitting maximum power. The results can be used as

a baseline in examination during common running condition.

Gear eccentricity and backlash

Gear eccentricity, backslash or non-parallel shafts often cause high amplitude

sidebands around the GMF. Furthermore, amplitude of gear vibration can

modulate at the running speed of the other gear. This phenomenon can be

observed in time domain waveform. Improper backlash usually excites the

GMF and gear natural frequencies and their sidebands at 1X.

Figure 2.3.11: Gear backlash

Gear misalignment

Gear misalignment often excites 2X or higher GMF harmonics and their

sidebands, which are spaced with the running speed. High amplitudes at 2X

and 3X of GMF can be observed from FFT spectrum, whereas 1X of GMF

stays low.
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Cracked or broken tooth

A cracked or broken gear tooth can be fairly well detected from the time

domain waveform because a spike is produced every time when damaged

tooth tries to mesh with teeth on the mating gear. In FFT spectrum, a high

amplitude at 1X of GMF can be observed and simultaneously gear natural

frequency is excited together with its sidebands spaced with running speed.

Figure 2.3.12: Broken tooth - time waveform

Hunting tooth

The gear hunging tooth can cause quite high vibration, but since it occurs

at low frequencies, it is often missed during vibration analysis. The hunting

tooth frequency can be expressed as:

Hunging tooth frequency =
𝐺𝑀𝐹 ·𝑁

no. of pinion teeth · no. of gear teeth
, (2.3.4)

where

N - lowest common integer multiple between the number of teeth on the

pinion and gear.

It it clear from the equation that the hunting tooth frequencies are very low.
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Summary

Entire gearbox can generate a whole series of signi�cant frequencies. At �rst,

frequencies of interest must be de�ned. The calculation is based on the pa-

rameters of the gearbox, its gears and pinions. Then those frequencies should

be identi�ed in the spectrum analysis to verify the computation accuracy.

Figure 2.3.13: Gearbox spectrum example
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3 Fault detection data processing

This section deals with methods used for data processing in this thesis. At

�rst, feature extraction is described with the methods and features of interest.

Then the feature reduction and its meaning are explained and also suitable

method is suggested. Further the diagnostics methods for fault detection are

provided. In case of the structure of HMS described in Figure 2.2.2, this

section deals with blocks "Data manipulation" and "State detection".

Figure 3.0.1: Data processing
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3.1 Signal preprocessing

Usually, before any method for calculation of features of interest can be

used the raw vibration data must be conditioned or preprocessed. The most

common techniques are:

� Correction of vibrations range by multiplying the whole signal by some

calibration constant which is based on used sensor.

� O�set correction.

� Removing the mean of the signal.

� Filtering (e.g. anti-aliasing �lter due to FFT).

� Interpolation (e.g. merging signals with di�erent sampling frequencies).

� Time synchronous averaging to extract repetitive signal from additive

noise.

� Data integration or derivation.

All these techniques must be used reasonably in relation to the signal. In

case of this thesis, the acquired data were not further preprocessed, however

the �nal application contains the tools to perform some of the preprocessing

techniques mentioned above.

3.2 Feature extraction

Usually, any types of defects or damage will in�uence the machinery be-

haviour which is measured by transducers and converted to electrical signals.

These raw data signals are conditioned or preprocessed and after that, vari-

ous methods are used to extract the features of interest, which are required

to be ideally more stable and well behaved than the raw signal itself. The

types of vibration analysis methods are shown in Figure 3.2.1. This work

deals only with time-domain and frequency domain methods.
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Figure 3.2.1: Vibration analysis

3.2.1 Time-domain analysis

The main bene�t of time-domain analysis is that the features can be cal-

culated rather simply and directly from the (preprocessed) raw signal. The

meaning of these features is to characterize the whole time signal (statis-

tical measures) and some of them may even indicate some faults, however,

they cannot provide any information on which component the fault occurred.

Nevertheless, trend of all these features can be examined over time and com-

pared with baseline values to detect developing faults.

Some of the features can be more sensitive to load and speed of the equip-

ment. Generally, when the feature has the same unit as the vibration signal

such as mean, standard deviation, RMS, etc., then it is dependent on load

and speed. On the other hand, when the feature is dimensionless such as crest

factor, kurtosis, skewness, etc., then it is less sensitive to load and speed.

Some vibration levels and theirs limit values are described in ISO norms such

as ISO 2372 where RMS alarms levels are de�ned.

Table 3.2.1 shows some of the time-domain statistical features, which can be

calculated from vibration signal. The most common features for machinery

industry are described in following sections in more detail.
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Feature Name De�nition

mean �̄� =
1

𝑁

𝑁∑︁
𝑛=1

𝑥𝑛

average recti�ed 𝑥𝐴𝑉 𝑅 =
1

𝑁

𝑁∑︁
𝑛=1

|𝑥𝑛|

maximum (peak) 𝑥𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑥𝑛)

minimum 𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑥𝑛)

peak to peak 𝑥𝑝2𝑝 = 𝑚𝑎𝑥𝑥𝑛 −𝑚𝑖𝑛𝑥𝑛

RMS 𝑥𝑅𝑀𝑆 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑛=1

𝑥2
𝑛

delta RMS 𝑥△𝑅𝑀𝑆 = 𝑥𝑅𝑀𝑆(𝑡) − 𝑥𝑅𝑀𝑆(𝑡− 1)

variance 𝑥𝜎2 =
1

𝑁

𝑁∑︁
𝑛=1

(𝑥𝑛 − �̄�)2

standard deviation 𝑥𝜎 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑛=1

(𝑥𝑛 − �̄�)2 =
√
𝑥𝜎2

crest factor 𝑥𝐶𝐹
𝑥𝑝2𝑝

𝑥𝑅𝑀𝑆

kurtosis 𝑥𝑘𝑢𝑟𝑡 =
1
𝑁

∑︀𝑁
𝑛=1(𝑥𝑛 − �̄�)4

𝑥4
𝜎

skewness 𝑥𝑠𝑘𝑒𝑤 =
1
𝑁

∑︀𝑁
𝑛=1(𝑥𝑛 − �̄�)3

𝑥3
𝜎

clearance factor 𝑥𝐶𝐿𝐹 =
𝑚𝑎𝑥(|𝑥𝑛|)

𝑥2
𝐴𝑉 𝑅

impulse factor 𝑥𝐼𝐹 =
𝑚𝑎𝑥(|𝑥𝑛|)

𝑥𝐴𝑉 𝑅

form factor 𝑥𝐹 =
𝑥𝑅𝑀𝑆

𝑥𝐴𝑉 𝑅

Table 3.2.1: Time-domain statistical features
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3.2.1.1 RMS

The RMS of the vibration signal represents the measure of the power content

in vibration. It is de�ned as:

RMS =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑛=1

𝑥2
𝑛, (3.2.1)

where

𝑥𝑛 - n-th member of data series ,

𝑁 - number of points in data series.

Equation 3.2.1 shows that the RMS value is not sensitive to isolated peaks

in the signal, thus these peaks do not increase its value. In general, the RMS

value of vibration signal is used as a descriptor of the overall condition of

the tested equipment. Its value usually increases when an equipment (e.g.

gearbox) wears out or some kind of damage makes progress (e.g. pitting).

RMS can also indicate a major out-of-balance in rotating systems. However,

this parameter is dependant on load and speed and the monitoring system

must take it into account.

The RMS is also used in other calculations such as crest factor or K-factor.

In some cases, the RMS value can be used as stop condition when it exceeds

a prior de�ned limit value.

3.2.1.2 Crest factor

The crest factor is a measure of existence sharp peaks in the vibration signal.

It is de�ned as:

crest factor =
peak level
RMS

, (3.2.2)

where
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peak level - peak value (or peak to peak value) of the raw data,

RMS - Root Mean Square of the raw data.

Equation 3.2.2 shows that peaks in the vibration signal will increase the crest

factor value but RMS value may not show signi�cant change. However, as the

damage progresses the RMS value will increase whereas crest factor decrease.

Therefore, crest factor is useful for indicating early stages of gear and bearing

damage which just cause the peaks in the vibration. Typical faults which

can increase the crest factor are tooth breakage on a gear or a defect on the

outer race of a bearing or the rolling bearing faults In other words, crest

factor indicates occurrence of impacts. A simple diagnostics method is often

comparing crest factor of healthy bearing or gear to that of damaged one.

Common value of crest factor during normal operations is in the range from

two to six. A value above six is usually associated with a machinery problem.

3.2.1.3 Kurtosis

Kurtosis is the 4th statistical moment and expresses the relative spikiness

(or �atness) of a time signal compared to its normal state. It is expressed as:

Kurtosis =

1
𝑁

𝑁∑︀
𝑛=1

(𝑥𝑛 − �̄�)4

𝑥4
𝜎

, (3.2.3)

where

�̄� - mean value ,

𝑥𝜎 - standard deviation.

Normal state corresponds to the normal distribution which has its kurtosis

value equal to three. Kurtosis value higher than three represents abnormality

and is usually associated with the existence of major peaks. The greater the

number of peaks in the signal, the larger is the kurtosis value. Kurtosis value

should increase as a gear wears and breaks and it is also good indicator of

incipient bearing defects.
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3.2.1.4 Skewness

Skewness is the 3rd statistical moment and it represents the measure of sym-

metry (or asymmetry) of the probability density function around its mean.

It is expressed as:

Skewness =

1
𝑁

𝑁∑︀
𝑛=1

(𝑥𝑛 − �̄�)3

𝑥3
𝜎

, (3.2.4)

where

�̄� - mean value ,

𝑥𝜎 - standard deviation.

A distribution (data set) is symmetric when the left and the right of the cen-

ter point of Gaussian distribution looks identical. A symmetric distribution

has a skewness value equal to zero. Negative skewness indicates that data

are skewed left and positive one that data are skewed right.

Usually, a machine in good condition has a Gaussian distribution, whereas a

damaged one has a non-Gaussian distribution (skewness is non-zero). Skew-

ness is usually used as a proper indicator of incipient bearing defects together

with kurtosis.

3.2.1.5 Others

In this section, meanings of other statistical parameters are explained. The

equations can be found in Table 3.2.1.

Mean is the 1st statistical moment and indicates the center of the distribu-

tion.

Standard deviation is the square root of variance (2nd statistical moment)

and expresses the measure of the preciseness of the data set, or more

precisely, the dispersion of the data set.

Peak level is the maximum value of the signal in a selected time interval.
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It is an indicator of occurrence of impacts and usually it is used in

computation of others features such as crest factor, etc.

Clearance and impulsive factors are sensitive to the existence of sharp

peaks as well as crest factor, therefore they are used as an indicator

of faults involving impacting, such as rolling element bearing wear or

gear tooth wear.

Form factor describes the waveform of the signal and it may be useful for

bearings defects detection.

Delta RMS is the di�erence between two consequent RMS values. Meaning

of this parameter is that it will increase more rapidly in case of damage

occurrence than e.g. RMS. However, as well as RMS also delta RMS

is dependant on load and speed.

3.2.2 Frequency-domain analysis

Time-domain analysis provides information that is not very su�cient and it

is not possible to identify the particular components in the vibration signal.

Fortunately, it is possible due to frequency-domain analysis which is based

on the theory of Jean Baptiste Fourier:

All waveforms, no matter how complex, can be expressed as the

sum of sine waves of varying amplitudes, phase and frequencies.

This idea enables to transform the signal from time domain into frequency

domain and vice versa. The output of frequency-domain analysis is frequency

spectrum (amplitude, phase, power, etc.), which provides information about

particular frequency components. The value of any interesting spectral com-

ponent can be trend over time and the progress of the fault can be examined.

However, the disadvantage of frequency-domain analysis is that a signi�cant

amount of information (transients, non-repetitive signal components) may

be lost during the transformation process. This can be resolved by using

time-frequency domain methods, which are not parts of this work.
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In a majority of industrial applications, the discrete signal is acquired from

the transducers, therefore Discrete Fourier Transform (DFT) must be per-

formed.

3.2.2.1 Fast Fourier transform

FFT is the most common way to compute DFT, which is de�ned as:

𝑋(𝑘) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛𝑇𝑠) · 𝑒(−𝑗2𝜋𝑘𝑛/𝑁), (3.2.5)

where

𝑁 - total number of samples used for calculation DFT, length of DFT ,

𝑘 - index of discrete frequency bins, k = 0,1,2,...,

𝑛 - index of samples,

𝑥(𝑛𝑇𝑠) - samples at time 𝑛 · 𝑇𝑠, n = 0,1,2,...,

𝑇𝑠 - sampling period.

FFT processes �nite discrete time signal and returns �nite discrete frequency

spectrum. To ensure maximal computation rate, the length of the time signal

must be power-of-two sized.

Frequency resolution and range

The frequency resolution (number of lines or bins) and frequency range

depend on:

� sampling frequency,

� number of acquired points.

In other words, length of the time-domain signal determines the properties

of the output of FFT.

The maximal frequency, which can be captured and displayed by FFT is

dependant on sampling frequency. This relation is described by Nyquist-
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Shannon sampling theorem:

𝑓𝑚𝑎𝑥 ≤ 𝑓𝑠
2

= 𝑓𝑁𝑄, (3.2.6)

where

𝑓𝑠 - sampling frequency,

𝑓𝑁𝑄 - Nyquist frequency.

The frequency resolution is de�ned:

△ 𝑓 =
𝑓𝑠
𝑁

=
1

𝑡𝑠 ·𝑁
, (3.2.7)

where

𝑓𝑠 - sampling frequency,

𝑡𝑠 - sampling period,

𝑁 - total number of samples,

𝑁 · 𝑡𝑠 - length of the waveform.

Aliasing

When the sampling theorem described by Equation 3.2.6 is not satis�ed,

which means that the time signal contains frequencies higher than Nyquist

frequency, the phenomenon known as aliasing occurs. In the aliased signal,

frequency components above Nyquist frequency appear as frequency compo-

nents below Nyquist frequency. It leads to an erroneous representation of

the signal.

To prevent aliasing, the anti-aliasing �lter must be used before the signal is

digitalized. The anti-aliasing �lter is a low pass �lter whose cut o� frequency

is equal to Nyquist one. After that, frequencies above Nyquist frequency are

removed and aliasing e�ect cannot occur.

In practice, the cut o� frequency of anti-aliasing �lter is not equal to Nyquist

one but a little bit lower:

𝑓𝑐𝑢𝑡𝑜𝑓𝑓 =
𝑓𝑠

2.56
. (3.2.8)

The reason is that the anti-aliasing �lter may roll o� over time. Nowadays,

the anti-aliasing �lter became a common part of many measuring modules
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and it is usually adjusted automatically according to the speci�c sampling

frequency.

Decibel

Amplitude or power spectra may be often displayed in logarithmic unit

decibel (dB), which is unit of ratio between measured value and reference

one. Logarithmic scale provides wider dynamics range and it is easy to see

the small frequency components with the large ones simultaneously in one

diagram.

Transformation to decibels from power values:

𝑃𝑑𝐵 = 10𝑙𝑜𝑔10
𝑃

𝑃𝑟𝑒𝑓

, (3.2.9)

where

𝑃 - measured power value,

𝑃𝑟𝑒𝑓 - reference power value.

Transformation to decibels from amplitude values:

𝐴𝑑𝐵 = 20𝑙𝑜𝑔10
𝐴

𝐴𝑟𝑒𝑓

, (3.2.10)

where

𝐴 - measured amplitude value,

𝐴𝑟𝑒𝑓 - reference amplitude value.

The reference value corresponds to 0dB and usually that value is chosen in

terms of same convention such as 1𝑉𝑅𝑀𝑆 in case of amplitude or 1𝑉 2
𝑅𝑀𝑆 in

case of power. After that, the output units are 𝑑𝐵𝑉 or 𝑑𝐵𝑉𝑅𝑀𝑆.

Windowing

Using windows correctly is critical parameter which can signi�cantly a�ect

the results of FFT.
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In general, Fourier transform assumes that the time record is exactly repeated

through all time and that signal contained in a time record are thus periodic

at intervals that correspond to the length of the time record. However, this

assumption is nearly impossible to ensure, therefore FFT displays spectral

components or sidebands where none truly exist. This e�ect is known as

spectral leakage.

The purpose of windowing is to ensure same value of the signal at the begin-

ning and the end of the time interval. When the captured signal is weighted

by window function, the marginal values of time interval are reduced to zero.

Unfortunately, this a�ects the ability to resolve closed spaced frequencies be-

cause the spectral peaks are "smeared". Is is evident, that using window is

certain compromise between quality and readability of the spectral compo-

nents.

Even if FFT processes time interval without applying special window, actu-

ally the rectangular window with amplitude equal to one is used. For this

reason, no window is often called the Uniform or Rectangular window. There

are many kinds of window functions such as:

� Rectangular (Uniform)

� Flat top

� Hanning

� Blackman

� etc.

However, the most common window in vibration analysis are the �rst three

ones mentioned above.

Usually, when the intent is to identify the presence of a signal component (a

peak) at speci�c frequency, it is best to apply a rectangular window. But,

if the amplitude of the peak is important, the �at top window is clearly the

best [14].

Averaging

When one time record is processed by FFT, the result may include some

peaks caused by a random vibration in�uence. To minimize this e�ect, a
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several time records are processed by FFT separately and the results are

averaged to improve the results. However, this is possible only if the signal is

stationary and linear. Several types of averaging exist and each of them has

certain qualities,therefore the averaging type is chosen according to usage.

The averaging types are:

linear - each FFT spectrum collected during a measurement is added to one

another and then divided by the number of additions. This helps in

obtaining repeatable data and tends to average out random noise. This

is the most commonly used averaging technique.

exponential - the most recent taken spectra are considered to be more

important than older ones, and thus given more mathematical weight

when adding and averaging them. This is used for observing conditions

that change very slowly with respect to sampling time.

peak hold - the peak value in each analysis cell is registered and then dis-

played. In other words, it develops an envelope of the highest spectral

line amplitude measured for any average. This technique is used for

viewing transients, such as coastdowns or random excitations that may

be required during stress analysis studies [14].

Overlap averaging

When more than one average is used to calculate FFT spectrum, it is

possible to use overlapping to improve calculation time. Instead of waiting

for capturing entire new time record to perform next averaging, a part of

already processed time interval can be append to the new one, which was

captured during the computation of the previous spectrum. This method

may be useful in on-line applications.

Types of spectra

The output of FFT is two-sided spectrum in complex form with real and

imaginary parts. This spectrum must be scaled and converted to polar form

to obtain magnitude and phase, which are most common form for spectra
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representation.

Amplitude spectrum2𝑆 [𝑉 ] =

√︀
𝑅𝑒2{𝐹𝐹𝑇 (𝑆)} + 𝐼𝑚2{𝐹𝐹𝑇 (𝑆)}

𝑁
(3.2.11)

Phase spectrum2𝑆 [𝑟𝑎𝑑] = 𝑎𝑟𝑐𝑡𝑎𝑛

(︂
𝐼𝑚{𝐹𝐹𝑇 (𝑆)}
𝑅𝑒{𝐹𝐹𝑇 (𝑆)}

)︂
(3.2.12)

The two-sided amplitude spectrum actually shows half the peak amplitude

at the positive and negative frequencies. In practice, the negative part is

meaningless, therefore the two-sided spectrum is converted to single-sided

form by multiplying each frequency other than zero (DC value) by two and

the negative part is discarded. After that, each peak of single-sided spec-

trum correspond to the peak amplitude of each sinusoidal components which

are contained in the time-domain signal. Often, the amplitude spectrum is

required in RMS value, therefore the single-sided non-DC components must

be divided by the square root of two. It is based on the common relation

between peak amplitude and RMS value:

Amplitude spectrum1𝑆 [𝑉𝑅𝑀𝑆] =
Amplitude spectrum(𝑛𝑜𝑛−𝐷𝐶)

1𝑆 [𝑉 ]√
2

. (3.2.13)

To obtain single-sided phase spectrum, the second half of the values must

be discarded. Following formula describes the conversion of phase spectrum

from radians to degree.

Phase spectrum [∘ ] =
180

𝜋
· 𝑎𝑟𝑐𝑡𝑎𝑛

(︂
𝐼𝑚{𝐹𝐹𝑇 (𝑆)}
𝑅𝑒{𝐹𝐹𝑇 (𝑆)}

)︂
(3.2.14)

Often, the power spectrum is useful for measuring the frequency content.

Single-sided power spectrum can be derived:

Power spectrum
[︀
𝑉 2
𝑅𝑀𝑆

]︀
= (Amplitude spectrum RMS)2 (3.2.15)

3.2.2.2 Order analysis

The most common method to analyse vibration signal is FFT mentioned

above. However, the necessary assumption of FFT is that the vibration signal

must be stationary. It means, the signal is not changing over time. In case
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of wind turbines (and most rotating machines in general), this assumption

cannot be satis�ed, because the rotating speed of the components is non-

stationary due to changing wind speed. Non-stationary signal causes that

the frequency bandwidth of each individual harmonic in FFT spectrum gets

wider. As a result, some frequency components may overlap.

On the other hand, Order Analysis (OA) provides correct results even if the

rotational speed changes over time. However, the output is not frequency

spectrum but order spectrum. Order is de�ned as the normalization of the

rotational speed, therefore:

� the �rst order corresponds to the harmonic at the same frequency as

that of the rotational speed,

� the second order corresponds to the harmonic at twice the frequency

of the rotational speed,

� the third order ...

When the rotational speed remains constant, the frequency spectrum and

order spectrum can be convertible.

Frequency =
speed [RPM]

60
·Order (3.2.16)

Order = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 · 60

speed [RPM]
(3.2.17)

Figure 3.2.2: Frequency and order spectra: x-axis

The di�erence between OA and FFT is in data acquisition. The FFT use

constant sampling frequency which de�nes the number of samples captures

during one second. In case of OA, that is replaced by the number of points
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captured (sampled with constant sampling frequency) during one whole rev-

olution of e.g. shaft. Since the rotation speed is not stationary, thus the

number of samples captured during one revolution is not constant. To get

the �x number of points for every revolution, the interpolation and resam-

pling operations are applied on the captured data. After that, the standard

FFT can be performed. Therefore, the OA provides the same quality as the

FFT and simultaneously it can be used for non-stationary signal.

3.3 Feature reduction

In layman's terms, it seems the more features is extracted during the mea-

surement the more accurate fault detection will be. However, this idea is not

correct because most machine learning techniques, including fault detection

methods, may not be e�ective for high dimensional data. The reasons are:

� curse of dimensionality and over�tting;

� query accuracy and e�ciency;

� visualisation (projection of high-dimensional data onto 2D or 3D);

� data compression.

Feature reduction is possible due to information redundancy in the data

because many of the features may be correlated with each other. Moreover,

many of the features will have a variation smaller than the measurement noise

and thus will be irrelevant [7]. Hence, a new set of the most representative

features should be found. The feature (dimension) reduction techniques can

be broken into:

� Selection-based techniques

� Transformation-based techniques

Feature selection is a process of selecting a subset of the original data with

su�cient amount of information. The main advantage is that the physical

meaning of the original features is retained. However, that is not true in case
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of transformation-based methods which converts the original date to di�erent

space. The new space is usually less dimensional than the origin.

Many methods of both mentioned types exist and new methods are being

developed because the dimension reduction is still an open problem. In fol-

lowing sections, one selection-based method and one transformation-based

method are discussed.

3.3.1 Preprocessing

The extracted data of features must be preprocessed as well as row vibration

signal before own processing. In case of this work, the indication of "bad"

measurement was not included in the input data. The "bad" measurement

means that the vibration signal was not acquired in proper conditions, thus

the computed vibration levels such as RMS, crest factor, may reach unrea-

sonable values. Those events are usually accidental and therefore random

peaks can be observed, when the trend of some feature is plotted over time.

3.3.1.1 Median filter

Median �lter is a non-linear digital �ltering technique, which is usually used

to remove noise. It can be successfully used also for elimination of random

peaks mentioned above, but the side e�ect is that it also blurs surrounding

values. Median �lter is de�ned as:

𝑦𝑖 = median(𝐽𝑖) (3.3.1)

where

𝐽𝑖 - subset of the input sequence centred about the i-th element,

𝑖 - index of sample, 𝑖 = 0, 1, · · · , 𝑛− 1.

The subset 𝐽𝑖 may not be centred equally as shown in Figure 3.3.1.
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Figure 3.3.1: Median �lter

3.3.2 Feature transformation

As mentioned above, transformation-based methods transform the origin

data set to a new space, which is less dimensional. The transformation-

based methods can be divided into linear and non-linear types and some of

them are listed below:

� Linear

– Principal Component Analysis (PCA)

– Independent Component Analysis

– Latent Dirichlet Allocation

– · · ·
� Non-liner

– Non-linear Principal Component Analysis

– Principal curves

– Neural networks

– · · ·

In Section 3.3.2.1, PCA is described in more detail.
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3.3.2.1 Principal component analysis

PCA is possibly the dimension reduction technique most widely used in prac-

tice and it is often used as a part of other more complex techniques. PCA

is a simple transformation method based on eigenvectors which transforms

𝑑 possibly correlated features into 𝑝 uncorrelated features called principal

components, where 𝑝 ≤ 𝑑. The �rst principal component corresponds to

the largest eigenvalue of the covariance matrix, and therefore has the largest

variation. It means that it contains most information which can be used in

the following processing.

At the beginning, there are 𝑑 column vectors 𝑚 × 1. Each vector 𝑣𝑖 corre-

sponds to a feature and each item of the vector corresponds to a measurement.

These measurement vectors create a 𝑚× 𝑑 matrix M.

At �rst, all vector must be normalized to ensure unit variance, therefore the

mean value 𝑣𝑖 of the vector is subtracted and the rest is divided by standard

deviation 𝜎𝑖 of the original vector.

𝑣𝑛𝑖 =
(𝑣𝑖 − 𝑣𝑖)

𝜎𝑖

, (element-by-element) (3.3.2)

The normalised vectors create a 𝑚× 𝑑 matrix 𝑀𝑛.

𝑀𝑛 = [𝑣𝑛1 , 𝑣
𝑛
2 , · · · , 𝑣𝑛𝑑 ]

Then, the covariance 𝑑× 𝑑 matrix 𝐶 of the matrix 𝑀𝑛 is determined and its

eigenvalues 𝜆𝑖 and eigenvectors 𝑒𝑖 are calculated.

After that, the eigenvalues 𝜆𝑖 are sorted decreasingly.

𝜆1 > 𝜆2 > · · · > 𝜆𝑑

Subsequently, the eigenvectors 𝑒𝑖 are sorted according to the sorted eigenval-

ues and create a new 𝑑× 𝑑 matrix 𝑇 .
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𝑇 = [𝑒1, 𝑒2, · · · , 𝑒𝑑]

Finally, the transformation can be performed.

𝑌 = 𝑀 · 𝑇 (3.3.3)

As mentioned above, the amount of information corresponds to the size of

eigenvalues. The sorting of eigenvalues and eigenvectors ensure the most in-

formative features correspond to the main principal components. The feature

reduction can be done by leaving out the smallest eigenvalues and correspond-

ing eigenvectors. After that, the transformation 𝑑 × 𝑝 matrix 𝑇 is obtained

and subsequently the output 𝑚× 𝑝 matrix 𝑌 , where 𝑝 ≤ 𝑑.

3.3.3 Feature selection

As mentioned above, the bene�t of selection-based method is that the phys-

ical meaning of dimension is preserved. The main assumption is that some

features may contain the same information and therefore the redundant fea-

tures can be removed. Selection-based methods for feature reduction can be

broken into:

� �lters

� wrappers

� embedded.

The methods are usually iterative to �nd the optimal subset of features.

Filters use a criteria function to evaluate the selected subset and thus �l-

ter(remove) redundant features. Wrappers are similar to �lters but the se-

lected subsets are evaluated by the performance of a model. On the other

hand, embedded methods apply a speci�c model straightly associated with

the target learning machine.
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3.3.3.1 Correlation-based method

In this thesis, the correlation-based �lter method is used to reduce the high-

dimensional space whereas the meaning of the features is preserved. The

method is based on mutual correlation of a feature pair 𝑥𝑘 and 𝑥𝑙, which is

de�ned as:

𝑟𝑥𝑘,𝑥𝑙 =

𝑛∑︀
𝑖=1

(𝑥𝑘
𝑖 − �̄�𝑘)(𝑥𝑙

𝑗 − �̄�𝑙)√︂
𝑛∑︀

𝑖=1

(𝑥𝑘
𝑖 + �̄�𝑘)2

𝑛∑︀
𝑖=1

(𝑥𝑙
𝑖 + �̄�𝑙)2

, (3.3.4)

where

�̄�𝑘 - sample mean of 𝑥𝑘,

�̄�𝑙 - sample mean of 𝑥𝑙,

𝑛 - number of samples in the feature vectors 𝑥𝑘 and 𝑥𝑙.

When two features are independent, the mutual correlation 𝑟𝑥𝑘,𝑥𝑙 = 0. The

mutual correlation can be calculated for all features in the data set 𝑋 and

average absolute mutual correlation of a feature over 𝛿 features can be de�ned

as:

𝑟𝑗,𝛿 =
1

𝛿

𝛿∑︁
𝑖=1,𝑖 ̸=𝑗

|𝑟𝑥𝑘,𝑥𝑙 |. (3.3.5)

The features 𝛼 which has the largest average mutual correlation

𝛼 = argmax
𝑗

𝑟𝑗,𝛿 (3.3.6)

is removed from the data set 𝑋. Then the whole process can be applied

again to remove another feature but to the new reduced subset.

This technique removes the most correlated (redundant) features one by one

till the required number of features 𝑑 remains. The problem is to determine

the size of 𝑑 to ensure certain amount of information in �nal subset. To

resolve this issue, the idea about eigenvalues of covariance matrix described

in the PCA section was adopted.

The sum of eigenvalues of covariance matrix of the original dataset 𝑋 rep-

resents the total amount of information. Each subset of 𝑋 has this sum
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lower, therefore the required amount of information can be speci�ed at the

beginning at a percentage of the amount of total information. When the

feature to remove from the set is determined, the sum of eigenvalues can be

determined and if the amount of information is over the speci�ed level, the

feature is really removed. The whole feature reduction algorithm is described

in Figure 3.3.2.
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Figure 3.3.2: Feature selection algorithm
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3.4 Fault detection

The fault detection is usually carried out by making a comparison between

present descriptors of a machine and reference (baseline) values. Two main

approaches de�ned in ISO standard ISO13379-1 can be used for diagnosing

the condition of the machine.

Data-driven approaches (simple trending, neural network, pattern recog-

nition, statistical, histographic Pareto approach or other numerical ap-

proaches). These methods are generally automated, do not require

deep knowledge of the mechanism of fault initiation and propagation,

but do require training the algorithm using a large set of observed fault

data.

Knowledge-base approaches, which rely on an explicit representation fault

behaviour or symptoms through, for example, fault models, correct

behaviour models or case description [4].

This paper falls within the data-driven approaches such as:

� statistical data analysis and case-based reasoning

� neural networks

� classi�cation trees

� random forests

� logistic regression

� support vector machines.

All methods mentioned above are fully described in ISO13379-1 as well as

pros and cons. In case of this thesis, the statistical data analysis approach

was chosen because of its simplicity and transparency. Also, the conclusion

from [11] was considered.
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3.4.1 Pattern classification

Pattern classi�cation belongs to the statistical data analysis methods for the

fault detection as mentioned above. This section is based on [11], where the

pattern classi�cation is described and evaluated as a proper method for fault

(event) classi�cation in comparison to others.

In case of this thesis, the goal is to realize unsupervised pattern classi�cation,

which means that the input patterns (data) are not associated with any

speci�c situation (fault).The classi�cation procedure can be divided into two

steps:

� clustering

� classi�cation.

3.4.1.1 K-mean clustering

Clustering or cluster analysis is primarily used to understand (explore) data

when there are:

� unknown number of classes

� no prior knowledge.

When the classes are not de�ned a priori, the cluster analysis must be per-

formed on training data set (patterns) to identify particular clusters which

are then described in suitable form. The clustering methods divide the data

set into relative homogeneous subsets (clusters) within the patterns are as

similar as possible.

Many types of clustering methods exist which divide data into clusters ac-

cording various criteria. In practice, the most common clustering method is

K-mean algorithm which divide data set containing 𝑛 samples into 𝑘 clus-

ters according to the mean distance. The number of clusters 𝑘 must be

speci�ed at the beginning. The algorithm is numerical, unsupervised, non-

deterministic and iterative clustering method which always divide data into

𝑘 clusters without overlaps. Each point belongs to the cluster with near-
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est mean (distance) to its centre. In another word, the algorithm tries to

�nd 𝑘 centres in the 𝑑 dimensional space to minimize the sum of squares of

Euclidean distance among 𝑛 samples and 𝑘 centres. It can be de�ned as

argmin
𝑆

𝑘∑︁
𝑖=1

∑︁
𝑥𝑗∈𝑆𝑖

‖ 𝑥𝑗 − 𝜇𝑖 ‖2, (3.4.1)

where

𝑘 - number of clusters,

𝑥 - data sample,

𝜇 - centre of cluster,

𝑆𝑖 - data subset, 𝑆 = {𝑆1, 𝑆2, · · ·𝑆𝑘}.

K-mean algorithm described in detail can be found e.g. in [8], [16].

3.4.1.2 Bayesian classification

Pattern recognition is the scienti�c discipline whose goal is the classi�cation

of objects into a number of categories or classes [16]. When the classes are

not a priori known, the unsupervised pattern recognition is applied to the

training data set to identify the classes. This thesis deals with statistical

classi�er which use a mathematical function to express the measure that the

classi�ed sample (pattern) belongs to the respective class. After that, usually

the class corresponding to the maximal value of the measure is chosen.

The most common statistic classi�cation method is based on Bayes's theorem

which is well known and described e.g. in [8], [16]. The Bayesian classi�er is

the most widespread approach based on stochastic characterisation of pat-

terns, assuming that the patterns are generated by a probabilistic system.

It use the probabilistic Gaussian discriminant function for the classi�cation

and suppose, that the distribution of pattern in particular classes has the

same shape of de�ned distribution [11].
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Figure 3.4.1: Gaussian distribution function

In the terms of own classi�cation, the most important part is the formula

de�ning the multivariate Gaussian distribution correlated in dimension as:

𝑦 =
1

(2𝜋)𝑛/2
√
det𝐶

· 𝑒−
1
2
(𝑥−𝜇)𝑇𝐶−1(𝑥−𝜇), (3.4.2)

where

𝑛 - number of dimensions,

𝐶 - covariance matrix of the class,

𝜇 - sample mean of the class,

𝑥 - data sample.

During the classi�cation procedure of the sample 𝑥, the Gaussian distribution

value 𝑦𝑖 is determined for each class 𝛾𝑖 de�ned with its covariance matrix 𝐶𝑖

and its mean 𝜇𝑖. Then, the class 𝛾 with maximal value 𝑦𝑖 is chosen as the

most probably one to which the sample belongs.

𝛾 = argmax
𝑖

𝑦(𝛾𝑖) (3.4.3)
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4 Experimental data

In this section, the real data from a wind power plant are described and

examined. Namely, the vibration data were acquired during the years 2011

and 2012 from the sensor no. 8 (See Table 2.1.1).

4.1 Raw data

The raw vibration data are acquired from sensors described in Table 2.1.1.

Measurements are carried out at irregular intervals. Usually, at least one

measurement per day is performed, when the power plant is not cut o�.

During the measurement, about 200 seconds of vibration signal is usually

acquired simultaneously with the rotating speed signal of the main shaft.

Figures 4.1.1 and 4.1.2 show correctly acquired data.

Unfortunately, the measurement is carried out independently on working

conditions of the wind power plant. Thus, the data can be acquired even if

the wind turbine is not working properly such as when the blades are not

rotating or when the gondola is changing position. Then the acquired signal

contains disturbing components, which are ineligible. Figures 4.1.4, 4.1.6,

4.1.8 show clear di�erence from acquired data in Figure 4.1.2. Changing

working condition can be also clearly distinguished from speed data in Figures

4.1.1, 4.1.3, 4.1.5, 4.1.7.
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Figure 4.1.1: Speed data acquired 29/4/12

Figure 4.1.2: Vibration data acquired 29/4/12
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Figure 4.1.3: Speed data acquired 12/2/2012

Figure 4.1.4: Vibration data acquired 12/2/2012
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Figure 4.1.5: Speed data acquired 3/3/2012

Figure 4.1.6: Vibration data acquired 3/3/2012
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Figure 4.1.7: Speed data acquired 8/5/2012

Figure 4.1.8: Vibration data acquired 8/5/2012

Since no information about changed working condition is provided and it is

di�cult to distinguish a "bad" measurement from the correct one before own

processing, "bad" measurements are revealed until the extracted features are

examined. The values of extracted features are usually out of standard range,

hence the measurement can be consider as improper (See Section 3.3.1).
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4.2 Working condition

As mentioned above, the measurement is carried out independently on the

working condition. In Figures 4.1.1 and 4.1.3 is shown, that the speed range

during measurement may be very variant. Further, in Figure 4.2.1, the av-

erage speed during particular measurements is displayed.

Figure 4.2.1: Average speed during measurements (2011-2012)

As mentioned in Sections 2.2.3.1 and 3.2, many features are dependant on

working condition. Since the load is changing with speed, the values are also

speed dependant. Hence, it is necessary to divide the measurements based

on the speed behaviour. Therefore, two working classes were speci�ed, as

described in Table 4.2.1. The reason is explained as follows. In Figure 4.2.2,

speed histogram is shown. It is clear that the usual working condition is

between 9-15 RPM. Due to the speed dependence of extracted features, it

would be suitable to create working classes with high resolution. However,

a small number of samples was available, therefore only two working classes

were de�ned, as shown in Table 4.2.1.
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name min avg. speed [RPM] max avg. speed [RPM] no. of samples

1 9 13 366

2 13 15 255

Table 4.2.1: Working classes

Figure 4.2.2: Histogram of average speed during measurements (2011-2012)

4.3 Trend examination

Figure 4.3.1 shows RMS values in full speed range. In comparison, Figures

4.3.2 and 4.3.3 show RMS values in the working class, de�ned in Table 4.2.1.

It is clear, that the trend plot are more consistent in the conditioned cases.

However, there are still random peaks. When the raw signal of corresponding

measurement was examined, it was found that the waveform is similar to

waveforms shown in Figures 4.1.4, 4.1.6, 4.1.8. Therefore, those peaks can

be consider to be caused by "bad" measurement (See Section 4.1). Since

the peaks are accidental, they can be removed by using median �lter, which

is described in Section 3.3.1.1. In Figures 4.3.4, 4.3.5, the smoothed RMS

60



Experimental data Trend examination

values are displayed. The median �lter with left rank 5, right rank -1, was

used.

Figure 4.3.1: RMS values in full speed range (2011-2012)

Figure 4.3.2: RMS - speed range 9-13 RPM (2011-2012)
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Figure 4.3.3: RMS - speed range 13-15 RPM (2011-2012)

Figure 4.3.4: RMS smoothed - speed range 9-13 RPM (2011-2012)
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Figure 4.3.5: RMS smoothed - speed range 13-15 RPM (2011-2012)

When the data are conditioned by speed and smoothed, the change in the

level can be clearly seen, as shown in Figures 4.3.4, 4.3.5.

4.4 Clustering

The aim of clustering methods is to group similar object (See Section 3.4.1).

In case of this thesis, the clustering is based on trend analysis described in

Section 4.3. In Figures 4.3.4, 4.3.5, the changes in the level of feature values

are clear. This changes may be associated with two cut o� events:

� 22/10/2011 - 1/1/2012,

� 1/9/2012 - 27/10/2012.

The three events split the whole examined time interval (2011-2012) into

three time periods described in Table 4.4.1. In terms of the de�ned time

periods, the data set was divided into three subsets based on the date of

measurement.
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cluster ID start end description

0 1.1.2011 22.10.2011 before 1st cut o� event

1 1.1.2012 1.9.2012 between cut o� events

2 27.10.2012 31.12.2012 after 2nd cut o� event

Table 4.4.1: Time periods

The clustering and subsequent classi�cation procedures were applied to data

of working class 13-15 RPM. The reason was that working class 13-15 RPM

contains more samples and the changes in trend were more signi�cant. Be-

fore, the clustering procedure started, 50 randomly chosen samples from the

working class data set (training sets) were removed. Those samples will be

used as unknown samples in classi�cation procedure to verify the designed

classi�er.

Clustering results based on the time periods are displayed in Appendix C.0.1,

where the axes of the graph are RMS and kurtosis. It can be seen that

the orange points are out of main cluster. Some of the orange points is

marked with the date of measurement. When the corresponding raw data

were examined, it was found that the waveforms are similar to them displayed

in Figures 4.1.4, 4.1.6, 4.1.8. Further, a small number of samples bounded

with a dashed ellipse create another cluster outside the main one. It was

found that these samples are characterized by very non-stationary speed

during the measurement. An example of non-stationary speed during the

measurement is shown in Figure 4.1.3. Due to the small number of points, it

was decided that all points (orange) outside the main cluster make up only

one another cluster. In the zoomed fraction of Figure C.0.1, it is clear that

three clusters, based on the speci�cation in Table 4.4.1, were formed. The

results con�rm the assumption that the maintenance during cut o� events

a�ected the resulting run of the wind turbine. Those clusters are clearly

identi�ed also in other 2D visualisations, not only when axes are RMS and

kurtosis.

The covariance matrix and mean vector can be easily calculated for each of

the four speci�ed clusters. These matrices and vectors de�ne corresponding
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classes. After that, the points of the classes can be generated from Gaussian

distribution (See Section 3.4.1.2) and the classes can be displayed, as shown

in Figure C.0.2.

4.5 Feature reduction

In this section, the feature reduction is applied to the data set (See Section

3.3). The suggested correlation-based algorithm described in Section 3.3.3

was applied to the data set. The amount of information was decreased grad-

ually and subsequently the algorithm reduced the dimension by removing the

most correlated features. The results are provided in Table 4.5.1.

Figure 4.5.1: Feature reduction (red - removed)

In Table 4.5.1, it can be seen that the most informative features in case of

the used data set were RMS and crest factor.
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4.6 Classification

In this section, the pattern classi�cation (See Section 3.4.1) will be applied to

the data set. The aim of classi�cation is to correctly classify new samples into

de�ned classes. In case of this thesis, the classes were not de�ned a priori,

therefore the classes were speci�ed by clustering (unsupervised learning) in

Section 4.4. The classes are described in in Table 4.6.1.

class ID start end description

0 1.1.2011 22.10.2011 before 1st cut o� event

1 1.1.2012 1.9.2012 between cut o� events

2 27.10.2012 31.12.2012 after 2nd cut o� event

3 � � "bad" measurement

Table 4.6.1: Classes

Before the clustering was carried out, the veri�cation samples were removed

from the data set. Thus, the classes were generated from a training set and

after that, the classi�cation was veri�ed with unknown samples, which were

not used in the training part.

The classi�cation pattern contains following features (See Section 3.2.1):

� crest factor;

� peak;

� RMS;

� min;

� min-max;

� skewness;

� kurtosis;

� standard deviation;

� clearance factor;

� impulse factor;

� form factor.
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No more features could be included into pattern vector due to the small

number of samples, because the problem of over�tting may occur. It means

that the number of samples in the training data set is not su�cient to the

pattern dimension size and subsequent classi�cation would fail.

The dimension and features of the pattern were chosen based on the feature

reduction results, described in Table 4.5.1. The classi�cation was carried out

in four cases of feature reduction, namely when the amount of information

was 100%, 70%, 40% and 10%.

During the feature reduction procedure described in Section 4.5, the covari-

ance matrix and mean vector of each of the four classes were generated and

stored. Then, the random samples of those classes could be generate by

Gaussian distribution. These randomly generated points were used for clas-

si�cation veri�cation. A new dataset of these samples were created, as shown

in Table 4.6.2.

class start sample end sample

0 1 1000

1 1001 2000

2 2001 3000

3 3001 4000

Table 4.6.2: Generated data set

Then the classi�cation was applied to this new dataset. The classi�cation re-

sults for di�erent pattern dimension size (amount of information) are graphi-

cally displayed in Appendix D.0.1. The evaluation of the classi�cation results

is provided in Table 4.6.3 and in Figure 4.6.1. It is clear, that the classi�-

cation accuracy is decreasing when the pattern dimension size is reduced.

However, it can be seen that when 70% of information was preserved, the

classi�cation results are always close to maximal accuracy. Moreover, when

only 40% of information was preserved, the results are always very accurate.
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XXXXXXXXXXXXXX
class

information [%]
100 70 40 10

0 99.82 99.73 98.57 84.30

1 99.53 99.30 96.57 76.34

2 99.97 99.96 99.66 95.41

3 100.00 100.00 99.98 95.80

Table 4.6.3: Classi�cation accuracy [%] - generated data

Figure 4.6.1: Classi�cation accuracy - generated data

The same classi�cation procedure were applied to a veri�cation dataset of

50 real samples. The samples are displayed with classes in 2D space of RMS

and kurtosis in Appendix D.0.3. The classi�cation results are graphically

displayed in Appendix D.0.2. It is clear again that the more features were

removed from the pattern, the worse classi�cation results were acquired. It

can be seen, that some samples were incorrectly classi�ed in all cases. The

reason is that some samples are situated close to the boundaries of the class,

as shown in Appendix D.0.3. In combination with class overlapping, the erro-
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neous classi�cation results may be obtained. Further, Appendix D.0.3 shows

that two samples (marked with date) are out of main cluster. Both these

samples were classi�ed correctly in all cases. Nevertheless, the ambiguous

results and the small number of samples caused that the �nal evaluation of

classi�cation accuracy cannot be provided.
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5 LabView application

The implemented application can be divided into two parts:

Data processing of vibration signal and feature extraction;

Data analysis of extracted features over time.

In following section, the application is described and the user guide is pro-

vided. The illustrative �gures of the application and its particular tabs can

be found in Appendix E.

5.1 Data processing tab

Data processing tab deals with vibration data analysis. The tab contains

four more sub-tabs:

� Processing setting;

� Time features;

� Spectrum;

� Log.

The main tab contains four control buttons to start, stop and pause data

processing. Pause button makes sense when auto processing is running and

the user wants to examine the current �le without stopping the processing.

The stop button in the right top corner ends the application. The application

is equipped with control mechanism to prevent senseless setting and ensure

correct results. Moreover, Descriptions and Tip options are also provided

when right mouse button clicks on an object of interest.
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Processing setting tab

This tab enables to adjust the processing setting to the requirements of the

user. At �rst,the operational mode must be speci�ed:

Manual

Only one tdms �le is processed. Its location is speci�ed in data path

box.

Auto

All tdms �les in a folder are processed one by one. The location of the

folder is speci�ed in data path box.

The application expects steady structure of tdms �le. When the user wants

to save the extracted features, the feature �le location must be speci�ed.

On the right side of the tab, the user can specify the preprocessing and

processing setting:

Data filtering

Setting of the IRR �lter. The high pass �lter is default option because

time domain vibration features require �ltering the DC component.

Data conditioning

The user can specify the o�set and gain to compensate calibration error.

Integration

Signal integration can be used to change the vibration type (accelera-

tion, velocity, displacement).

Spectrum setting

The con�guration of spectrum computation can be adjusted. When

the checkbox auto is checked, the maximal order is determined from

feature processing setting on the left side, otherwise the maximal or-

der is select automatically. When order resolution is set to zero, the
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maximal available resolution is used. See Section 3.2.2.1, where these

options and its relations are described.

On the left side of the tab, the user can specify the features to extract:

Vibration features such as crest factor, RMS, etc. (See Section 3.2.1).

Frequency component in orders (See Section 3.2.2.2). The names of com-

ponents and frequencies must be saved in external txt �les (compo-

nent.txt, frequency.txt).

Envelope extraction setting is enabled.

When more then one channel are processed, the user can specify more channel

settings. It is assumed, that the names of data �les starts with the channel

number such as 00, 01, ... 15. Then the corresponding setting can be used.

When only one feature extraction setting is entered, is can be used for all

channels.

Finally, the user can save its setting to the xml �le and use it in next session.

Time features tab

This tab provides the visualisation of the loaded vibration data. User can

display the speed data, loaded vibration data and also the preprocessed and

envelope data which were acquired with preprocessing operations. The re-

quested time domain features are also displayed.

Spectrum tab

This tab enables spectrum analysis of preprocessed signal and its envelope.

The spectra are displayed and they can be saved in tdms �le and loaded in

next session. The requested spectral components are also displayed.
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Log tab

This tab provides information about the processing. When auto processing is

running, a warning can occur because some �les may contains unusable data.

The table on the right side contains information about the loaded spectra on

the previous tab.

Data analysis tab

This tab provides a tool to examine the extracted features and analyse the

potentiality of fault detection.

At �rst, the user must specify the path to the tdms �le with extracted fea-

tures. When the �le is loaded, the user can select the features to analyse.

When the user requires conditioning by speed, the speed channel must be

speci�ed. When the time-axis is required with values, the timestamp chan-

nel must be also speci�ed. When working classes are speci�ed on the Setting

tab, the user can select one to condition the data. When the user requires

removing of random peaks, the smoothing must be set (See Section 3.3.1).

Trend tab

This tab enables to examine trends of selected features within the selected

working class.

Statistic tab

This tab displays the histograms of selected features within the selected work-

ing class.
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Correlation tab

This tab displays the correlation matrix of selected features within the se-

lected working class. The Correlation sum list displays the sum of correla-

tions for particular features and the box Information speci�es the setting for

feature reduction method (See Section 3.3.3.1).

Clustering tab

This tab provides a tool to realise pattern classi�cation (See Section 3.4.1).

When features are selected and feature reduction is done (or not), the user

can observe the n-dimensional space via a 2D window, whose axis can be

selected by user.

Clustering mode is activated with the corresponding button and it can be

done manually or with K-mean algorithm (See Section sec:kmean). The

recommended way is to use K-mean and then the suggested clusters can

be modi�ed manually. The number of clusters can be changed at will

during clustering process. The number of the edited cluster is selected

in box Cluster. Clear button deletes actual selection. Double click on

this button deletes all marks.

Time analysis of particular measurements can be performed when the check-

box Date is checked. The radio button enable to select the long or short

date format.

Classes can be displayed, when clustering is �nished by pressing button

Done. Then the corresponding representation of particular classes is

generated and the classes can be plotted by pressing button Plot class.
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Class analysis tab

This tab shows the representation of selected clusters, namely its covariance

matrix and mean value (See Section 3.4.1). The representation can be saved

and loaded in next session.

Classification tab

When classes are created during clustering or loaded from previous work, the

classi�cation can be performed. The box Classes enables to select the classes

which will participate in the classi�cation process. The chart displays the

classi�cation results graphically (See Section 3.4.1.2).

Setting tab

This tab enables to create particular working classes.
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6 Conclusion

Fault diagnostic is of prime importance for the safe and e�ective operation

of mechanical systems. In case of wind power plants, the pressure to qual-

ity is especially high due to enormous installation investment and high costs

of maintenance. The most common technology of condition monitoring is

vibration-based diagnostic, which can reveal change in vibration behaviour

associated with the wind turbine drive train failure. Subsequently, the re-

sults from vibration diagnostic must be analysed by an expert system to

assess the current health condition and generate recommendation or eventu-

ally an alarm. Due to the regular condition monitoring and assessment, the

maintenance can be scheduled reasonably and the costs are reduced.

In this thesis, the meaning of condition-based monitoring is introduced and

the structure of monitoring system is described based on the common ISO

standards. Further, the most common failures and their symptoms are de-

scribed together with the vibration methods used to feature extraction. Sub-

sequently, the feature reduction meaning is introduced and suitable algorithm

is suggested. Finally, the clustering and pattern classi�cation is presented as

s potential method for fault detection.

In practical part, the introduced methods were applied to experimental data.

At �rst, the row data were analysed and it was shown that the measured data

may contain erroneous samples, which may e�ect consequent processing, and

therefore it should be take into consideration. Then, the values of features

were analysed over time and two cut o� events were identi�ed. It was as-

sumed, without any a priori information, that the cut o� events may sig-

nify fault occurrence. Therefore, the measurements were divided into three

groups based on the date of measurement. When the features were displayed

in more dimensional space (2D), corresponding clusters were formed. It ac-

knowledged the assumption that measurements during similar operational

condition fall within same cluster,which can be distinguished from clusters

formed by di�erent conditions.

The statistical representation, namely covariance matrix and mean vector,

was computed class based on the identi�ed clusters. After that, new sam-
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ples of particular classes could be generated by using Gaussian distribution.

These samples was used to verify the obtained classi�er and evaluate the fea-

ture reduction method. It was con�rmed that when the number of features,

which create the pattern, was reduced too much, the classi�cation generates

more erroneous results. Nevertheless, till the amount of information in left

features was above certain level, the classi�cation results were acceptable, no

matter how many features were removed.

In term of future work, the positive contribution of feature reduction to clas-

si�cation results must be con�rmed by applying it to higher number of real

samples, which was not available in case of this work. The training data

set should contain longer time history and the information about the fault

events must be provided to associate particular samples and clusters with real

operational conditions. Furthermore, more sophisticated feature extraction

method should be examined to provide more informative features. Namely,

phase analysis may enable to distinguish di�erent faults on rotating parts

and methods in time-frequency domain may provide new information, which

cannot be obtain in frequency or time domain.

In conclusion, the thesis realize the de�ned aim which was to summarize the

rotating machine faults and suggest a way to realize fault detection. In addi-

tional, the requirements of the submitter from Areva GmbH to implement an

application in LabView, by which the measurement data can be examined,

was accomplished.
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Clustering

Figure C.0.1: RMS, kurtosis in speed range 12-15 RPM (2011-2012)

VII



Figure C.0.2: RMS, kurtosis - generated classes
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Classification

Figure D.0.1: Classi�cation results - generated data
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Figure D.0.2: Classi�cation results - real data



Figure D.0.3: Classes and veri�cation samples
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