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Abstract

The process of non-destructive polymer quality assessment involves an in-
spection under a microscope by a skilled operator. To make the quality
assessment process automatic, a series of images capturing the polymer in-
dentation recovery must be obtained and analyzed. This thesis deals with
the problem of tracking of changes in polymers from image data. The image
segmentation process is identi�ed as an integral part of such a problem. Sup-
port vector classi�cation is employed to segment the images. Features based
on variance are proposed and their performance is evaluated. The designed
features proved to be suitable for the segmentation of indentation images as
evidenced by the high classi�cation performance.
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Chapter 1

Introduction

In the world of today, as technological development progresses, increasing
demands on the manufacturing process and quality assurance are only to be
expected in many areas of industry. One of the important areas is polymer
quality inspection. Polymers �nd their usage in all manner of applications
ranging from spacecraft manufacture to the production of chewing gum. The
basic building block of biological life, DNA, is also a polymer (biopolymer).

Currently, testing of polymer quality usually involves destruction of the
manufactured part and thus can be quite costly. In the area of metal hardness
testing, there is an array of non-destructive hardness measuring techniques.
Metal hardness is tightly related to other properties of the materials [2], [7].
What if these non-destructive techniques could be utilized to measure the
properties of polymers? In [26], an indentation-based technique is used to
quantify the viscoelastic response of the bulk polymers.

Several material hardness measurement methods exist. All of these are
based on an indenter of varying shape being forced into the surface of the
tested specimen with a prede�ned load. From the shape of the indenter, the
created impression and load applied, hardness is calculated. Depending on
the shape of the indenter, these methods are named after their inventors.
These include Rockwell, Brinell, Knoop and Vickers hardness tests. For
microindentation measurements, Knoop and Vickers methods are used.

This thesis deals with the problem of automatic computer vision-based
analysis of Vickers indentations in polymers. In automatic inspection of
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indentations, the aim is to extract dimensions of the impression from its mi-
croscopic image. Some automatic inspection methods try to locate the center
of the indentation [14], while others aim to �nd the boundaries of the inden-
tation [13], e�ectively segmenting out the indentation from the background.
Hrúz, �iroký and Ma¬as [17], utilize particle swarm optimization to �nd the
boundaries of the Vickers impression. Other Vickers indentation measure-
ment techniques utilize wavelet theory [31] and the Hough transform [30].

A wide variety of image segmentation approaches and techniques is avail-
able today. The simplest of which is thresholding. Techniques based on
splitting and merging of the parts of the image based on prede�ned criteria
are collectively referred to as split-and-merge methods. Other available ap-
proaches to segmentation include methods based on graph-cuts, clustering
and classi�cation. For the purposes of this thesis, an approach based on
Support Vector Machine (SVM) classi�cation was chosen.

Organization of this thesis is as follows. Metal hardness testing according
to Vickers is discussed in Chapter 2. Chapter 3 outlines some of the funda-
mental image segmentation approaches, including classi�cation. The SVM
classi�er and its historical development is described in Chapter 4. The prac-
tical part of this thesis starts with Chapter 5, where the process of feature
extraction is described. In subsequent chapters, the choice of the method of
testing is justi�ed and results are presented and discussed. The �nal chapter
provides the conclusion for this thesis.



Chapter 2

Vickers Hardness Test

One of the important properties of materials that helps to identify them is
hardness. Askeland [2] mentions that �Hardness can not be de�ned precisely.
Hardness, depending upon the context, represents resistance to scratching
or indentation and a qualitative measure of the strength of the material.�
In order to determine the hardness of metals, several methods of hardness
testing have been developed. Among others, these include: Rockwell, Brinell,
Knoop and Vickers hardness tests. In this chapter, only the Vickers hardness
testing method is described.

2.1 Origins

In 1921 in the UK at Vickers Ltd, Smith and Sandland developed the Vickers
test as an alternative to the Brinell test for measuring hardness of materials.
As Vander Voort and Fowler [27] explain, �The test was developed because
the Brinell test (introduced in 1900), which (until recently) used a round
hardened steel ball indenter, could not test steels harder than ∼ 450HB
(∼ 48 HRC).� Historically, the Vickers hardness measurement was separated
into two categories: microhardness and macrohardness measurements. When
the applied load on the indenter is less than 1000 gf, microhardness is mea-
sured. In contrast, when the load is more than 1 kgf, macrohardness is mea-
sured. Because in macro tests the size of the indentation is larger, �... macro
tests yield a gross product average, while micro tests indicate variations in
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hardness� [27]. Micro Vickers tests are generally performed in a laboratory,
whereas macro tests are performed in the workshop.

2.2 The Method

Like most other hardness measurements methods, the Vickers hardness test
is based on forcing an indenter of prede�ned shape into the surface of the
measured specimen. This results in an impression being created in the ma-
terial, which is subsequently inspected by a skilled operator with the help of
a magnifying lens. The relevant dimensions of the impression are measured
and used to calculate the hardness number.

The indentation-based hardness measurement methods can be distin-
guished from one another by the shape of the indenter used. In Vickers
hardness test, a regular, pyramid-shaped indenter with an angle of 136◦ be-
tween opposing faces and the length of the diagonal d is used. As the indenter
must be harder than the material measured, it is usually made of diamond.
The Surface area of the resulting indentation A in square millimeters can be

Figure 2.1: Vickers hardness measurement scheme.

determined as

A =
d2

2 · sin(136◦/2)
≈ d2

1.8544
, (2.1)
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where d is the average diagonal length of the indentation in the material.
The corresponding Vickers hardness HV is given by the ratio

HV =
F

A
=

1.854F

d2
, (2.2)

where the force F is in kgf (kilogram-force is the force magnitude exerted
by one kilogram in the Earth's gravitational �eld), and diagonal length d is
in millimeters. As the diagonal lengths of the impression can be di�erent
from one another (which can be caused by the indenter being o�set from the
normal direction to the surface), the operator measures the length of both
diagonals of the impression and uses the average value in hardness number
calculation.

Unlike in other hardness tests, in the Vickers test the load is applied
smoothly and held in place for the duration of 10 − 15 seconds. The hard-
ness number is given in the format xHVy (e.g. 440HV30) or xHVy/z (e.g.
440HV30/20), if the time during which the load is applied di�ers from the
standard 10 − 15 seconds. In the above hardness number format, x is the
hardness number, y is the load applied in kgf and z is the load time.

Unlike the Rockwell test, which uses a number of di�erent scales in di�er-
ent situations, an advantage of the Vickers test is that it uses only one scale
for all materials. On the other hand, Rockwell tests are fully automated and
the process of hardness determination does not require the participation of
a skilled operator.



Chapter 3

Image Segmentation

Image segmentation is one of the key problems in computer vision. It con-
cerns itself with partitioning an image into a number of segments, where
pixels in each segment share some visual characteristics, such as brightness,
texture, color or motion. The goal of segmentation is twofold. The �rst goal
is to decompose the image into meaningful parts that usually correspond to
real-world objects. The second goal is to provide simpli�ed image represen-
tation for further high-level processing. It is thus a building block for all
subsequent processes like shape analysis and object recognition [23]. In [15],
the state of the theory of image segmentation is described as follows: �There
is no theory of image segmentation. Image segmentation techniques are ba-
sically ad-hoc and di�er precisely in the way they emphasize one or more
of the desired properties and in the way they balance and compromise one
desired property against another.�

Various approaches and techniques for image segmentation have been pro-
posed over the years; however, in this chapter only a few basic techniques are
discussed. For a comprehensive overview of image segmentation techniques,
the reader is referred to [24]. For earlier methods, [3] can be recommended
and for more recent approaches, [25, 24] can be consulted.
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3.1 Thresholding

Image thresholding is the earliest and the simplest method of image segmen-
tation. �If background lighting is arranged so as to be fairly uniform, and
we are looking for rather �at objects that can be silhouetted against a con-
trasting background, segmentation can be achieved simply by thresholding
the image at a particular intensity level� [11].

Formally, let I(i, j) be a 2D array of brightness values representing the
grayscale image. The goal of thresholding is to �nd an optimal threshold
value T , for the purposes of generating a segmented binary image IT (i, j)
such that

IT (i, j) =

1 if I(i, j) ≥ T,

0 if I(i, j) < T.
(3.1)

Value 1 is assigned to those pixels in the original image whose value is above
the threshold level. If the pixel value is below the threshold, the pixel value 0
is assigned. The values do not have to be strictly 0 for background and 1 for
foreground objects; any two distinct values are su�cient. Figure 3.1 shows
an original image and its thresholded counterpart.

Figure 3.1: Thresholding. Left: original image; right: thresholded image.

Various methods of �nding an optimal threshold exist. In the simplest
case, when object and background can be clearly di�erentiated based on
brightness level alone and the image histogram is bi-modal, the optimal
threshold level lies somewhere in the valley between the two modes (peaks).
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In such cases, one mode represents foreground objects and the other mode
the background. However, some problems have to be dealt with when con-
sidering such an approach. In [11], the following di�culties are listed:

1. �The valley may be so broad that it is di�cult to locate a signi�cant
minimum.

2. There may be a number of minima because of the type of detail in the
image, and selecting the most signi�cant one will be di�cult.

3. Noise within the valley may inhibit location of the optimum position.

4. There may be no clearly visible valley in the distribution because noise
may be excessive or because the background lighting may vary appre-
ciably over the image.

5. Either of the major peaks in the histogram (usually that due to the
background) may be much larger then the other, and this will than
bias the position of the minimum.

6. The histogram may be inherently multimodal, making it di�cult to
determine which is the relevant thresholding level.�

The essence of this approach is depicted in Figure 3.2.

0

fr
eq
ue
nc
y

brightness
threshold

background

foreground

Figure 3.2: Bi-modal histogram. One mode represents dark background, the
other represents a bright foreground object.
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Ever since the advent of thresholding, there have been many methods de-
vised for automatic threshold determination. One of these is a variance-based
technique also known as Otsu's method [21], which will now be described. In
the variance-based approach, the optimal threshold level is selected based on
the ratio of between-class variance and total variance. First, assume an im-
age with L gray levels. Let ni denote the number of pixels with gray level i.
The total number of pixels in the image is therefore N = n1 + n2 + . . .+ nL.
The probability of a pixel having a gray level i is

pi =
ni
N
, (3.2)

where

pi ≥ 0,
L∑
i=1

pi = 1. (3.3)

Given a threshold level k, the image histogram can be divided into two parts
(classes). One class is formed by the gray levels lower than k and the other
by the gray levels above k. Between-class variance σ2

B and total variance σ2
T

can now be computed as

σ2
B = π0(µ0 − µT )2 + π1(µ1 − µT )2, (3.4)

σ2
T =

L∑
i=1

(i− µT )2pi, (3.5)

where

π0 =
k∑
i=1

pi, π1 =
L∑

i=k+1

pi, (3.6)

µ0 =
1

π0

k∑
i=1

ipi, µ1 =
1

π1

L∑
i=k+1

ipi, µT =
L∑
i=1

ipi. (3.7)

Using the aforementioned formulas, between-class variance simpli�es to

σ2
B = π0π1(µ1 − µ0)

2. (3.8)

The criterion that is to be maximized is given by the ratio of between-class
variance and total variance

η =
σ2
B

σ2
T

. (3.9)
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As the image histogram is �xed, total variance σ2
T is constant, and so, to

obtain the optimal threshold, only between-class variance σ2
B needs to be

maximized. Gray level k, for which the maximal σ2
B is attained, is the re-

sulting optimal threshold level.
Other methods for �nding the optimal threshold level exist, such as

entropy-based methods, where the thresholding level is determined as the
one that maximizes total entropy of the image histogram. As in the previous
case, the thresholding level divides the intensity histogram, giving rise to two
histograms (foreground and background). Total entropy is then computed
as the sum of the individual histogram entropies. The optimal threshold is
the one for which the total entropy is maximized. The logic behind this ap-
proach is the following. Since entropy is de�ned as a measure of disorder in
the system, maximizing total entropy of the image histogram has the e�ect
of maximum reduction in image entropy after thresholding is performed, and
thereby imposes maximum order on the system.

To sum up, image thresholding is the earliest approach to image segmen-
tation and it is therefore no surprise that it is also the easiest one. The main
advantage of thresholding is the fact that it is not computationally demand-
ing, unlike other segmentation algorithms. This, however, goes hand in hand
with the limited usability, where often rather strict conditions on the scene
illumination have to be met to allow for meaningful results to be obtained.

3.2 Split-and-Merge Methods

Split-and-merge methods fall into a broader category of region-based im-
age segmentation methods. It is convenient to �rst brie�y introduce the
bottom-up region merging approach and the top-down region splitting ap-
proach before split-and-merge methods are described.

Bottom-up region merging methods start with an image that is initially di-
vided into regions that coincide with individual pixels. Segments are formed
by successively merging smaller regions into larger ones. For merging to
occur, certain homogeneity measure requirements have to be met. For ex-
ample, the measure could be de�ned as the di�erence in the intensity level
of individual regions. In case the di�erence in intensity is higher than the
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prescribed tolerance, regions are not merged and vice versa. Di�erent ho-
mogeneity measures can take into account information about region texture,
color and so on. The merging ends when there are no two regions that can
be merged.

Top-down region splitting methods involve, as the name suggests, succes-
sive splitting of the initial region corresponding to the whole image. Splitting
of a region into four quadrants occurs when the region's homogeneity toler-
ance is not satis�ed and vice versa.

The authors of [24] mention the fact that region splitting methods can
produce di�erent segmentation results than region merging methods even if
the same homogeneity criteria are used, and hence conclude that these two
approaches are not dual.

Now that the workings of region splitting and merging methods have
been outlined, a technique combining the advantages of both approaches
called split-and-merge can be described. The need for this approach arose
from one unpleasant feature of the previously described methods. As Haral-
ick [15] notes, �Because segments are successively divided into quarters, the
boundaries produced by the split technique tend to be squarish and slightly
arti�cial. Sometimes adjacent quarters coming from adjacent split segments
need to be joined rather than remain separate.� For this reason, Horowitz and
Pavlidis [16] proposed a split-and-merge method, which takes as its initial
starting point arbitrary intermediate image partitioning and recursively pro-
ceeds in both directions (splitting as well as merging). Among the advantages
of this approach, improved segmentation quality without increased memory
requirements and improvement of computational speed can be counted.

split

m
er
ge

Figure 3.3: Split and merge.
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For their operation, split-and-merge methods use pyramidal image repre-
sentation, in which regions are square-shaped. If four regions with approx-
imately same the homogeneity measure are found on any level of the pyramid,
they are merged together to form a region on a higher level of the pyramid.
Conversely, if any region on any level of the pyramid is not homogeneous
enough, it is split into four subregions.

In terms of computational complexity, region-growing methods are con-
sidered to be computationally expensive and thus not well-suited for indus-
trial applications [3]. However, in [16], the authors claim that savings in
computation can be achieved by appropriate choice of initial intermediate
level of image partitioning.

3.3 Clustering

Another approach to image segmentation is clustering. From the perspec-
tive of machine learning, clustering falls into the category of unsupervised
learning. In unsupervised learning, the dataset of n vectors D = {xi}ni=1

is given and the goal is to discover, which vectors are similar and therefore
naturally form clusters. The term �unsupervised� refers to the fact that in-
dividual vectors in the dataset are not labeled (i.e. for each vector there is
no additional information on whether the particular vector belongs to one
cluster or another).

Taken from the perspective of computer vision applications, clustering
makes use of the fact that groups of similar pixel brightness values in the
image naturally form clusters. Instead of working only with one-dimensional
information (like pixel brightness), it is also possible to take into account
the pixel neighborhood. In such a case, for each pixel in the image, an m-
dimensional feature vector x = [x1, . . . , xm] is formed describing the pixel in
a wider context and so enabling, for example, extraction of textural informa-
tion.

An essential part of a clustering algorithm is the ability to compare two
feature vectors; that is, to determine how far one vector is from another. For
that purpose, a number of vector space metrics can be used. Let xi,xj ∈ Rm

be two feature vectors describing local properties in the neighborhood of i-th
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and j-th image pixels. The metric de�ned as

ρ(xi,xj) = ‖xi − xj‖2, (3.10)

is called the Euclidean metric, where

‖xi − xj‖2 =

√√√√ m∑
k=1

(xik − x
j
k)

2 (3.11)

is an `2-norm. In such a case, it is said that the metric is induced by a norm.
Aside from the Euclidean metric, a wide array of other metrics is available.
For example, the Euclidean metric is in fact a special case of a metric induced
by an `p-norm, given by

p

√√√√ m∑
k=1

(xik − x
j
k)
p, (3.12)

where 1 ≤ p <∞ is the parameter. For instance, when p = 1, a Manhattan
distance is obtained. When p = 2, the Euclidean metric is acquired. Every
metric ρ must also satisfy the following conditions:

non-negativity : ρ(x,y) ≥ 0, (3.13)

identity : ρ(x,y) = 0 ⇐⇒ x = y (3.14)

symmetry : ρ(x,y) = ρ(y,x), (3.15)

triangle inequality : ρ(x, z) ≤ ρ(x,y) + ρ(y, z), (3.16)

where x,y, z ∈ Rp. With the notion of a metric outlined, we can now proceed
to explain the simplest clustering algorithm.

One of the earliest clustering algorithms is the k-means algorithm. The
principle objective of k-means clustering lies in minimization of within-cluster
squared distance. Let {xi}ni=1 be a set of n feature vectors that we wish to par-
tition into a set of k mutually exclusive and exhaustive clustersC = {C1, . . . , Ck}.
The goal of k-means clustering is to �nd partitioning that minimizes

min
S

k∑
i=1

∑
xj∈Ci

‖xj − µi‖2, (3.17)

where S is set of all possible divisions of the dataset and µi denotes the
mean of the i-th cluster, also called cluster centroid. The following points
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summarize the algorithm.

K-means clustering:

1. Randomly pick k initial vectors x1, . . . ,xk as cluster centroids.

2. For each vector xi, determine its distance to each of the k centroids
(evaluate metric) and assign xi to the cluster represented by the closest
centroid.

3. Recalculate cluster centroids (compute the mean of the clusters).

4. Repeat steps 2 and 3 until convergence is achieved (cluster centroids
cease to change or only change very slightly).

The algorithm is guaranteed to converge to a solution, which does not have
to be necessarily optimal. Results of the k-means clustering algorithm are
highly dependent on the way the initial centroids are chosen and the number
of clusters k. For that reason, it is usually recommended to run the algorithm
multiple times, with the initial centroids being randomly chosen on every run.

The result of the application of k-means clustering to color image segmen-
tation is displayed in Figure 3.4. More in-depth discussion of various cluster-

Figure 3.4: Original image on the left and segmented image using a k-means
(k = 16) clustering algorithm on the right.

ing algorithms with applications to image segmentation can be found in [19].
An overview of contemporary clustering techniques is discussed in [20].
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3.4 Classi�cation

In the previous section, unsupervised learning was outlined as one possible
way to image segmentation. Unsupervised learning is characterized by the
fact that the data being processed lack ground-truth labels. Opposed to this
is a supervised learning approach, where individual vectors are assigned a
label.

In supervised learning, a dataset D = {(xi, yi)}ni=1 is given, where a
pair (xi, yi) is called the training example, which consists of p-dimensional
feature vector xi ∈ Rp and corresponding label yi ∈ R. The goal is to
learn a predictor y∗ = g(x∗; θ) from available training data D, which will
accurately predict the label value y∗ for the new previously unseen data
vector x∗. In case the predicted label value y∗ is discrete, this is called a
classi�cation problem, if the predicted value y∗ is continuous, this is referred
to as a regression problem [4]. For the purposes of this thesis, only the
classi�cation problem will be further considered.

The learning algorithm which performs the task of classi�cation is called
the classi�er. Each classi�er operates in two phases. During the training

phase, available data are used to yield an optimal estimate θ∗ of the classi�er's
parameter. This process is known as training. In the application phase,
the optimal parameter of the classi�er is set. Previously unseen data are
presented to the classi�er and class label predictions are obtained for each
new input vector.

When considering the classi�cation of objects, it is of paramount impor-
tance to identify that which di�erentiates a particular class of objects from
another class. Classi�cation performance is greatly a�ected by the choice
of measured features, which form the feature vector. To give an example,
height and weight are good features to measure when detecting whether a
particular person is overweight or not. On the contrary, the color of one's
skin or size of one's feet have no bearing on one's excessive weight. These
are examples of features that have no discriminatory value, and thus do not
contribute to the performance of the classi�er.

Another factor a�ecting the performance of the classi�er is the problem
of high bias and high variance. When the classi�er su�ers from high bias,
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the trained model is of too low complexity to accurately discriminate the
individual classes. This is also referred to as the problem of under�tting.
On the other hand, when the classi�er su�ers from a high variance problem,
the trained model is of higher complexity than is necessary, which is also
referred to as the problem of over�tting. A classi�er that has just the right
complexity (it doesn't under�t nor over�t the data) is said to generalize well.

To determine which of these problems lies behind the poor performance
of the classi�er, it is helpful to �rst divide the dataset D into two parts.
One part of the dataset, called the training set, is used for training of the
classi�er; the second part, the test set, represents unseen data and is used for
the �nal performance evaluation. Figure 3.5 shows the error of the training
set as a function of model complexity. The optimal model complexity can be

model complexity

er
ro

r

train set

test set

Figure 3.5: Training and test set errors as a function of model complexity.

determined by �nding the minimum of test set error.
To prevent the problem of over�tting (or under�tting), some algorithms

employ a regularization parameter, which penalizes the model �exibility and,
if set correctly, ultimately prevents the aforementioned problems. In this
case, it is often common practice to divide the dataset into three parts:
training set, validation set and test set. As in the former case, the training set
is used to train the classi�er and the test set is used for the �nal performance
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training
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training
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≈ 20%
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≈ 20%

Figure 3.6: Possible division of dataset for reasons of performance evaluation
and regularization parameter �ne-tuning.

assessment. Before the �nal performance can be assessed, the validation set
is used to �nd the optimal setting of the regularization parameter, which
ensures the optimal bias/variance trade-o�. As shown in Figure 3.7, error
on the training set and error on the validation set are plotted as a function
of regularization parameter λ. When λ is low, the model is more �exible

regularization
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Figure 3.7: Training and validation set errors as a function of regularization
parameter λ.

and therefore the error on the training set is low. However, the validation
set error is high, because during training, the model relied too much on
the training data and when presented with new previously unseen data it
makes a lot of errors. With more regularization applied (increased λ), the
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model �exibility becomes more restricted and as a result the training set error
gradually increases. As the validation set error develops for increasing λ, at
a certain point it reaches minimum and then starts rising again. It is at this
point where regularization strength λ is deemed to have the optimal value.

When solving the problem of image segmentation by supervised learning,
a classi�er is trained to classify each pixel as belonging to either foreground or
background. First, a suitable set of images that are representative of the task
being solved needs to be selected. Having chosen su�ciently discriminatory
features, a feature extraction procedure can form a feature vector for each
pixel in the image. In addition to that, the user needs to manually label
every pixel. Labeling can be very tedious and time-consuming and for some
classi�cation problems, even a very expensive process. After the dataset is
prepared, the classi�er can be trained and tested. Once we are con�dent that
the classi�er can produce su�ciently accurate predictions, it is �nally ready
to perform the task of image segmentation.

Over the years of research in machine learning and related �elds, a great
number of learning algorithms have been devised. As a result, the choices
of classi�cation algorithms at present are numerous. As a good reference for
machine learning algorithms, [4, 5, 12, 20] are highly recommended. The
SVM classi�er that was chosen as suitable for the purposes of this thesis, is
described in the following chapter.



Chapter 4

Support Vector Machines

Support vector machines are supervised learning models that can be used for
classi�cation as well as regression. In this thesis, attention is directed only
to the support vector classi�cation. Throughout this chapter we will use the
abbreviation SVM in the sense of support vector classi�cation.

A support vector machine is a binary linear classi�er that arose from
the results of statistical learning theory (also called Vapnik-Chervonenkis
theory). It was �rst proposed by V. N. Vapnik in 1979 [28]. An SVM
is sometimes said to belong to the class of decision machines [5], since it
only decides to which class a given object belongs and does not provide a
posterior probability of the predictions. The great advantage of SVMs is
that they are trading-o� bias and variance, thus preventing over�tting and
ensuring good generalization performance. Furthermore, the problem can
be formulated as a convex optimization problem, whose solution is unique
(follows from convexity) and also sparse. Sparsity of the solution is a very
desirable property when computational aspects come into play.

To illustrate the development in the �eld of support vector machines, we
will gradually work our way to the �nal form of the SVM classi�er as it is
used today.
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4.1 Optimal Separating Hyperplane

Before we start to talk about SVMs, it is helpful to introduce the notion
of an optimal separating hyperplane. We will assume a set of n training
examples (xi, yi) forming a dataset D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1,
where xi is the input feature vector and variable yi is the label, which encodes
class membership of xi. The dataset is said to be linearly separable if all the
feature vectors with label yi = 1 can be separated from all the feature vectors
with label yi = −1 by a (p − 1)-dimensional linear hyperplane in Rp. Since
an SVM is a linear classi�er the discriminant function has the form

h(x) = wx+ b, (4.1)

where w is the normal vector perpendicular to the hyperplane and b is the
bias term.

The problem we are facing is the following; given a linearly separable
dataset of training examples D, �nd a linear hyperplane among all possible
linear hyperplanes that separates the data with the largest margin. Roughly
speaking, a hyperplane separates data with the largest margin if the distance
from the hyperplane to the nearest points of both classes is maximal. It can
be shown with the use of VC theory [29] that maximizing the margin is one
of the ways to achieve optimal generalization performance of the classi�er.

Returning back to the fact of multiple possible separating hyperplanes,
consider Figure 4.1 for illustration. There are many linear hyperplanes that
are capable of separating the dataset; however, only one of them separates
the data with the largest margin. In order to determine which of the many
possible linear hyperplanes is the optimal one, the problem will be formu-
lated as a convex optimization problem with linear constraints, whose unique
solution is value w∗ de�ning the hyperplane that we seek. Finally, the class
membership of the new previously unseen feature vector x will be assigned
according to the decision rule

g(x) = sign (w∗x+ b) . (4.2)
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h2(X)

h1(X)

h3(X)

x1

x2

Figure 4.1: There are many ways in which the two classes can be separated.

4.2 Hard Margin

First, we will consider a case where the data is linearly separable. The
hyperplane is thus assumed in the form of (4.1). As mentioned before, we
are seeking a hyperplane that separates the data with the largest possible
margin d, as depicted in Figure 4.2. To express the margin in terms of the
parameters of the hyperplane w and b, consider two vectors x1 and x2, which
lie exactly at the bounds. It holds

wx1 + b = 1, (4.3)

wx2 + b = −1. (4.4)

Subtracting (4.4) from (4.3) and normalizing w to unit length, we obtain

w

‖w‖2
· (x1 − x2) =

2

‖w‖2
, (4.5)

where ‖w‖2 = wTw is a squared Euclidean norm. The margin is thus
given by a projection of (x1 − x2) onto the normal vector w and is equal
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Figure 4.2: Hard margin; no error in classi�cation is allowed.

to d = 1/‖w‖2. In order to maximize d, the quantity ‖w‖2 must be mini-
mized, and so the optimization problem becomes

min
w

1

2
wTw, (4.6)

subject to constraints

yi · (wxi + b) ≥ 1, i = 1, . . . , n. (4.7)

The objective function is quadratic and the constraints are linear; this prob-
lem is therefore one of quadratic programming. To solve this, we use the
method of Lagrange multipliers, which converts the original constrained op-
timization problem into an unconstrained one. The Lagrange function is

L(w, b, α) =
1

2
wTw −

n∑
i=1

αi[yi(wxi + b)− 1], (4.8)
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where αi are Lagrange multipliers. Taking partial derivatives

∂L(w, b, α)

∂w
= 0 ⇔ w =

n∑
i=1

αiyixi, (4.9)

∂L(w, b, α)

∂b
= 0 ⇔ 0 =

n∑
i=1

αiyi, (4.10)

and substituting back into (4.8), we obtain the Wolfe dual

W (α) =
n∑
i=1

αi −
n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj). (4.11)

The dual must be maximized

max
α

W (α) (4.12)

under the constraints

0 ≤ αi,
n∑
i=1

αiyi = 0, i = 1, . . . , n. (4.13)

The expression for the �nal resulting separating hyperplane

g(x) = sign

(
n∑
i=1

αiyi(xi · x) + b

)
. (4.14)

can be obtained by plugging (4.9) into (4.1).
Because of the fact that the obtained solution is sparse, some of the coef-

�cients αi will be zero. As a result of that, the optimal separating hyperplane
is determined only by feature vectors xi for which αi > 0. These are called
support vectors.

4.3 Soft Margin

In real-world applications, linearly separable classes are more of a rarity than
a common occurrence. We are thus more likely to encounter a problem where
the classes are overlapping. This can be caused either by the nature of the
data itself (presence of outliers) or simply by the inevitable presence of noise
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Figure 4.3: Soft-margin; misclassi�cation is allowed to a certain degree.

in measurements. In 1995, Cortes and Vapnik [9] suggested a modi�cation
of the idea of a maximum margin hyperplane that can handle the case of
overlapping classes.

The situation is captured in Figure 4.3. To solve this problem, slack vari-
ables were introduced into the inequality constraints. Slack variables ξi mea-
sure the degree of misclassi�cation of xi, therefore relaxing the constraints
and consequently making the model more �exible. In order for the misclas-
si�cation to be minimal, slack variables need to be added to the objective
function. We have

min
w

1

2
wTw + C

n∑
i=1

ξi, (4.15)

subject to constraints

yi · (wxi + b) ≥ 1− ξi, i = 1, . . . , n. (4.16)

The parameter C > 0 is called the regularization constant, which �controls the
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trade-o� between slack variable penalty and margin� [5]. The Lagrangian is

L(w, b, α, ξ) =
1

2
wTw+C

n∑
i=1

ξi −
n∑
i=1

αi[yi(wxi + b)− 1]−
n∑
i=1

βiξi, (4.17)

where αi, βi ≥ 0, i = 1, . . . , n are Lagrange multipliers. Taking partial
derivatives

∂L

∂w
= 0 ⇔ w =

n∑
i=1

αiyixi, (4.18)

∂L

∂b
= 0 ⇔ 0 =

n∑
i=1

αiyi, (4.19)

∂L

∂ξi
= 0 ⇔ C − αi − βi = 0 (4.20)

and substituting back into (4.17), we obtain the same dual as before

W (α) =
n∑
i=1

αi −
n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj). (4.21)

The dual must be maximized

max
α

W (α) (4.22)

subject to constraints

0 ≤ αi ≤ C,
n∑
i=1

αiyi = 0, i = 1, . . . , n. (4.23)

The optimal value of regularization parameter C must be found experimen-
tally using a validation set.

On a side note, there exists yet another approach that incorporates slack
variables. What was shown above is the approach of minimizing an L1-norm;
however, an L2-norm minimization is also possible. This is done by replacing
the regularization term

∑
i

ξi in the objective function by
∑
i

ξi
2.

4.4 Kernel Trick

In previous sections we have dealt with two important cases. Namely, the
linearly separable case, the least complicated of all, and the case of over-
lapping classes, where the overlap may be due to inherent noise in feature
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measurement. However, so far we have not addressed the most common sce-
nario often encountered in many real-world applications: the case of linearly
non-separable classes.

One of the things that makes SVMs so powerful is the so-called kernel

trick, which is used throughout machine learning (not only in SVMs) and is
very helpful in dealing with this problem. It was �rst introduced by Aizerman

Figure 4.4: Kernel trick: On the left we see the original input space; the
separating hyperplane here is nonlinear. On the right is transformed higher
dimensional feature space, where data are linearly separable.

et al. in 1964 [1]. The main idea of the kernel trick is to create an alternative
representation of the data in higher-dimensional feature space, where the
data are linearly separable, by means of a nonlinear transformation.

Let us direct our attention to the dual form of the optimization problem

W (α) =
n∑
i=1

αi −
n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj); (4.24)

notice the dot product term in double summation. We want to transform
data points into higher-dimensional feature space, and for that we introduce
the so-called kernel function

k(xi,xj) = φ(xi) · φ(xj). (4.25)

By de�ning a kernel, we are implicitly de�ning a transformation φ, which
doesn't have to be known explicitly. Evaluation of the kernel for any two
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data points xi and xj will give us a representation of the dot product xi · xj
in transformed feature space. The dual objective (4.24) can therefore be
modi�ed accordingly

W (α) =
n∑
i=1

αi −
n∑
i=1

n∑
j=1

αiαjyiyj · k(xi,xj), (4.26)

resulting in a separating hyperplane given by

g(x) = sign

(
n∑
i=1

αiyi · k(xi,x) + b

)
. (4.27)

A useful fact can be noted here. The solution α is sparse, which means that
a good amount of αi will be zero. The summation in (4.27) will therefore
concern only support vectors, since for support vectors it holds that αi > 0.

For a function to qualify as a kernel it needs to meet certain requirements,
which are extensively discussed in detail in [22] and also [10]. We will only
mention examples of popular choices of kernels that are widely used. These
are

linear : k(xi,xj) = xi · xj, (4.28)

d-th degree polynomial : k(xi,xj) = (xi · xj + 1)d, (4.29)

radial basis function : k(xi,xj) = exp(−γ‖xi − xj‖2), (4.30)

sigmoid : k(xi,xj) = tanh(γ(xi · xi) + r). (4.31)

A kernel doesn't only have to be de�ned by a function. It can also be de�ned
by an algorithm. This allows for kernels to be de�ned for all kinds of objects
like graphs, strings, etc. Examples of such kernels can be found in [10]
and [20].
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Feature Extraction

A vital part of every automatic Vickers indentation inspection system is ob-
taining measurements of the impression in the material. To achieve this goal,
some solutions resort to detection of corners of the square-shaped impression,
while others try to segment out the inner region of the impression. In this
thesis, the supervised learning approach to image segmentation was chosen.
To accomplish this task, the SVM classi�er was the natural choice because
of its robustness to noise.

Having settled on which classi�er to use, the next crucial step is, obvi-
ously, the design and choice of appropriate features and assembling them
into a feature vector. In this chapter, a process of feature extraction, which
serves as a preliminary step to SVM learning, is described in detail.

5.1 Data and Labeling

An optical system that captures the indentation in the polymer produces a
series of images with 1280× 1024 resolution. The images used for this thesis
were provided in PNG format, every image approximately 700kb in size. The
series of 50 images depicts an impression in PMMA (plexiglass) polymer as
it shrinks in time. Roughly 10 initial images in the series had to be thrown
away due to overexposure.

Because the chosen approach to image segmentation is supervised learn-
ing, a training set had to be created. In order for the sequence to be rep-
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resented as a whole, the training set was formed by selecting images from
the whole series. Copies of these images were labeled. Labeling consisted of
loading the image in bitmap editor GIMP, carefully outlining the impression
in the polymer by hand and then using a bucket-�ll tool to �ll the inside of
the selection. It must be noted that the process of labeling is highly subjec-
tive, because the edges of the impression in the image were blurry and hardly
discernible, thus presenting di�culties in determining where the edge truly
lies, especially when zoomed in on the detail. Figure 5.1 shows an example
of the original provided PNG image and the labeled copy of the same image.

Figure 5.1: Provided image in full resolution and its labeled counterpart.

5.2 Preprocessing Operations

Because of the inherent row noise introduced by the camera electronics in
the supplied images, measures to alleviate this problem had to be taken. To
remove the row noise, pixel values in every row were summed up and the
resulting column vector was mean-�ltered. The di�erence between the un-
�ltered and �ltered column vector of row sums was calculated. Di�erence
obtained was normalized (by the number of pixels in the column vector, i.e.
image height) and subsequently subtracted from every column of the im-
age. Additional to that, the whole image was then �ltered with a low-pass
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frequency �lter. The result of the noise removal process can be seen in Fig-
ure 5.2.

Figure 5.2: Detail of original un�ltered image (left) and image after noise
removal (right).

As the SVM classi�er is not the algorithm that scales best with the
amount of data, considerations that would reduce the computational load
had to be taken into account. If a feature vector would be formed for every
pixel of the 1280× 1024 image, this would result in 1280 · 1024 = 1, 310, 280

feature vectors for every image in the sequence, which is simply intractable.
For this reason, every image was resized by a factor of 0.4.

Furthermore, to ensure that the two classes of pixels (background and
foreground) are equally represented, a crop that contained the impression
was necessary. This was done also for the purpose of the �nal performance
evaluation. Should the foreground and background be unequally represented,
this would introduce the problem of skewed classes and certain classi�er
performance metrics would be inadequate.

Finally, as the images su�er from low contrast, a contrast enhancement
was required. At �rst, ordinary histogram equalization was considered. How-
ever, because the illumination in the images is uneven, with a halo appearing
in the lower left corner, ordinary histogram equalization produced an image
where the signi�cant edges were lost in the process. Instead, an adaptive
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Figure 5.3: Original image (resolution: 1280 × 1024) and the image after
resizing and cropping (resolution: 298× 298).

histogram equalization, which takes into account the local image proper-
ties, was considered. Nonetheless, features extracted from these images still

Figure 5.4: Histogram equalization, adaptive histogram equalization and a
combination of the two.

yielded unsatisfactory results. When images enhanced with adaptive his-
togram equalization were further subjected to ordinary histogram equaliza-
tion, the classi�cation results improved. Figure 5.4 compares the e�ect of
ordinary histogram equalization, adaptive histogram equalization and the
successive application of the two.
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5.3 Variance Features

As stated in the �nal section of the previous chapter, in order to classify each
pixel as belonging to either foreground or background, a feature vector that
describes the local pixel properties must be created. This feature vector must
take into account the most relevant and salient features that will discriminate
well between the two classes of pixels.

To this end, features based on image variance are proposed in this thesis.
The reason for choosing variance is the fact that variance is a statistical
measure of variability. The impression is characterized by large areas more
or less uniform in brightness and therefore variance is presumed to be low. In
contrast, the background is characterized by the presence of a great number
of smaller dark blobs on the bright background and therefore the variance is
expected to be higher.

A variance image is created by sliding a window of given size across
the whole input image, where for every window position the variance of
pixels inside the window is computed. Since the sliding window approach is
computationally expensive, the properties of integral images were utilized.
As can be noticed, the formula for variance can be expressed in terms of
sums of the pixel values.

σ2 =
1

N

N∑
i=1

(xi − µ)2 =
1

N

N∑
i=1

x2i −
2µ

N

N∑
i=1

xi + µ2

=
1

N

N∑
i=1

x2i − µ2 =
1

N

 N∑
i=1

x2i −
1

N

(
N∑
i=1

xi

)2
 (5.1)

This fact is very useful, because the summation terms
∑
xi and

∑
x2i can be

easily precomputed and then used for variance computation as demonstrated
by the formula. Concretely, computation of variance in every image window
is simply a matter of four arithmetic operations.

In order to take into account variations in the image brightness on mul-
tiple scales, 15 di�erent window sizes were utilized for variance image com-
putation. The smallest window size used is 3. The window sizes go up
by 4 all the way to 59, forming the following sequence: 3, 7, 11, 15, 19,
23, 27, 31, 35, 39, 43, 47, 51, 55, 59. As the di�erent window sizes are
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utilized, each resulting variance image has di�erent dimensions (the margin
of (windowsize − 1)/2 is removed); the computed variance images were all
cropped to the size of the variance image produced by the largest window.
Therefore, the image resolution changed from 298× 298 to 240× 240 pixels,
resulting in 2402 = 57600 feature vectors per input image. By calculating a

Figure 5.5: Variance images computed using window sizes 3× 3, 31× 31 and
59× 59.

variance image using 15 di�erent window sizes, a series of 15 variance images
for every input image is obtained (Fig. 5.6). The resulting variance images
can be imagined as being stacked on top of each other. The feature vector for
every pixel is then constructed by selecting the corresponding pixels in every
image of the series. In other words, pixels that are on top of each other form
the feature vector. Because �fteen di�erent window sizes were used during
variance image computation, the resulting feature vector, describing a single
pixel in a wider local context, is 15-dimensional.

3x37x711x1115x1519x1959x59

15x1 feature vector 
per pixel

15 window sizes

Figure 5.6: Extraction of feature vectors from a set of variance images.



Chapter 6

Experiment Design

In this chapter, binary classi�er performance evaluation metrics such as pre-
cision, recall, F1-score and Matthews Correlation Coe�cient are de�ned and
explained. After that, the design of speci�c experiments is justi�ed. There
were two types of experiments performed. One type of experiment is designed
to evaluate the segmentation performance, with the help of performance mea-
sures mentioned above. The other type of experiment evaluates the precision
with which the computer is able to locate the center of the indentation. De-
termining the location of the indentation center is an important initial step
for other high-level feature extraction techniques.

6.1 Performance Metrics

For assessing the performance of the binary classi�er, several measures can
be used. Before these can be de�ned, it is necessary to introduce the so-called
confusion matrix. In the case of classi�cation into two classes (dichotomy),
four distinct possible outcomes can occur. The confusion matrix is used to
clearly capture the rate of these phenomena. In Figure 6.1, TP stands for
True Positive, which, in our case, is the number of pixels that the human
expert labeled as object and the classi�er also assigned to the object. Corre-
spondingly, TN stands for True Negative, which is the number of pixels that
were labeled as background and, at the same time, predictions also indicate
that they belong to the background. In other words, in both of these cases,
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Figure 6.1: Confusion matrix. Positive represents the foreground (indenta-
tion) and negative the background.

the predicted value (determined by the classi�er) matches the ground-truth
label (provided by the human expert). In contrast, False Positive (FP) is
the number of pixels that were supposed to be predicted as belonging to
the background, but instead predictions say that these pixels belong to the
foreground. The False Negative (FN) rate is de�ned analogously.

Having introduced the confusion matrix, several useful classi�er perfor-
mance measures that combine the elements of this matrix will now be de�ned.

Precision

Precision is the ratio of true positives to all the positive predictions (including
the false positives).

P =
TP

TP + FP
(6.1)

In the image segmentation context, for the precision to be high the number
of pixels falsely predicted as belonging to the object (false positive rate) must
be minimal. High precision can then serve as an indicator of low overseg-
mentation and vice versa.

Recall

Recall is de�ned as the ratio of true positives to all the predictions that
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should be predicted positive.

R =
TP

TP + FN
(6.2)

In the image segmentation context, for the recall to be high the number of
pixels falsely predicted as belonging to the background (false negative rate)
must be minimal. High precision can then serve as an indicator of low over-
segmentation and vice versa.

F1-score

In order to combine and control the trade-o� between precision and recall,
the F1-score was derived. The F1-score is a special case of Fβ-score (for
β = 1), which puts weight on precision and recall equally. The formula is
essentially the harmonic mean of precision and recall.

F1 = 2 · P ·R
P +R

(6.3)

This measure takes on values between 0 and 1, where the higher values are
desirable.

Matthews Correlation Coe�cient

None of the measures mentioned previously take into account the true nega-
tive rate. The consequence of this is that precision, recall and even F1-score
can provide misleading values in cases when the number of foreground pixels
is signi�cantly di�erent from the number of background pixels (skewed/imbalanced
classes). The Matthews correlation coe�cient solves this problem by includ-
ing a true negative rate in its formula.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(6.4)

Speaking in the context of image segmentation, even if the object in the
image was very small (or large) in relation to the background, the Matthews
correlation coe�cient would still provide an unbiased performance assessment
of the classi�er. The coe�cient takes on values in the interval [−1, 1], where
−1 indicates total disagreement between prediction and ground-truth label,
0 means predictions are no better than random prediction and +1 represents
perfect prediction.



6.2 Segmentation Performance 37

6.2 Segmentation Performance

In order to successfully track the indentation recovery in time, it is necessary
to know the location of the indentation boundaries as precisely as possible.
Which is why the image segmentation process has to be as accurate as pos-
sible. In the �rst experiment, the focus is therefore on image segmentation
quality evaluation.

The twelve labeled images chosen as representatives of the image sequence
were utilized as a working dataset for this experiment. The goal of this
experiment is to show the learning ability of the SVM classi�er for gradually
increasing training set size. As we had 12 labeled images at our disposal,
a decision was made to create training sets of two, four, six, eight and ten
images. To put this into perspective, every 240 × 240 image is described
by 57, 600 feature vectors. Figure 6.2 provides a diagram illustrating the
ways in which the training and testing set were put together. The black
dots indicate the images from the sequence that were used for training. The
white dots mark the images used for testing and performance assessment.
In this manner, �ve SVM models were trained and for each of them all the
previously de�ned performance measures were calculated.

1 2 3 4 5 6 7 8 9 10 11 12

model 1

model 2

model 3

model 4

model 5

image index

Figure 6.2: Division of the dataset for training (black) and testing (white).
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Because the image segmentation process is based on per-pixel classi�ca-
tion, the resulting predictions are expected to contain a certain amount of
noise. The predictions obtained thus need to be �ltered in a suitable manner.
The design of the �ltering step was directed by the prior information at our
disposal. Namely, that the indentation is a compact object (does not contain
any holes) and the fact that the indentation is the largest object in the image.
In the �rst part of the �ltering step, the holes were �lled (MATLAB func-
tion imfill()). In the second part, only the largest connected component
was selected, thus eliminating the erroneous positive predictions outside the
object to a large extent. Since the �ltering step should eliminate noise it is
expected that the �ltering will also have a positive e�ect on segmentation
performance. Results of this experiment are presented and discussed in the
next chapter.

6.3 Center Location

The goal of the second experiment is to show the ability of the automatic
Vickers indentation inspection algorithm to determine the center of the in-
dentation. Determining the center of the indentation is an important step
in subsequent high-level feature extraction and processing operations. The
�nal image segmentation, produced and evaluated in the �rst experiment, is
taken as a starting point. The center position is determined by averaging
the positions of pixels that form the indentation in the segmented image. In
other words, the position of those pixels that were predicted as part of the
indentation were averaged to obtain the center location.

The indentation's center as determined by the algorithm was compared
with the ability of the human experts. Five human experts marked the center
of the indentation in every image of the sequence. This process was repeated
two more times. Therefore, we obtained 15 attempts (5 experts, each with 3
attempts for every image) for every image in the sequence. These attempts
were averaged to obtain an average human attempt for every image. Both
un�ltered and �ltered predictions were used for the calculation of the center
location and compared with the results of the average human expert. The
results obtained using the �ltered predictions were expected to exhibit lower
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dispersion throughout the whole tested image sequence.
For training of an SVM model, 12 images were selected, so as to form a

su�ciently representative sample of the whole sequence of 42 images. Fig-
ure 6.3 shows a diagram of an image sequence beginning with the 11th image.
This is because the �rst 10 images had to be thrown way due to overexposure.
The black dots mark the images used for training and the white dots images
used for testing. As the whole image sequence is too long, the presence of
the testing images in the middle of the sequence was indicated by the small
dots to conserve space.

.. .. .. .. .. .. .. .. .. .. ..

image index

20 25 28 30 35 38 40 45 48 5015 1811 51 5214

Figure 6.3: Diagram illustrating the choice of training images in the context
of the whole image sequence. Training images (black); testing images (white
and small black dots).

If the SVM is provided in the training phase with the training images
that bound a given subsequence of testing images, the SVM should gener-
alize well to the unseen intermediate testing images (i.e. achieve reasonable
segmentation performance). Thus, it is assumed that the quality of image
segmentation will be better for the testing images lying in between the train-
ing images (black dots, Fig. 6.3) rather than for those lying on either end of
the sequence (marked by dashed boxes, Fig.6.3).

Since all of the labeled images were used for training of the classi�er, it
is impossible to quantify the performance of the classi�er in this experiment.
The learned SVM model is only used to provide predictions and it is only
through visual inspection that one is able to roughly assess the quality of
image segmentation.



Chapter 7

Experiment Results and

Discussion

In this chapter, results of the both experiments explained in the previous
chapter are presented and discussed.

7.1 Setting of the SVM

Before experiment results can be obtained, a suitable implementation of an
SVM needs to be chosen and properly con�gured.

When deciding to use an SVM for solving a speci�c task, one does not
need to write their own implementation from scratch. SVMs have become
very popular over the years and many di�erent implementations of the SVM
classi�er are available to the public. For the early experimentation and opti-
mal parameter setting, the LibSVM implementation [8] was used. LibSVM
has a large user base and many projects are built on it. These include
wrappers for various programming languages such as Python, R, C#, C++
and Matlab, as well as parallel implementations utilizing CUDA and MPI.
It provides support for solving classi�cation problems (C-SVC, ν-SVC) and
regression problems (ε-SVR, ν-SVR). The most popular kernel choices men-
tioned in Section 4.4, such as linear, polynomial, RBF and sigmoid kernel,
are all supported as well.

For the �nal experiments, where larger data sets were handled, LibSVM
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implementation was still very ine�cient, as it utilized only one CPU core,
and training was taking too long (e.g. training on 2 images took 31 minutes;
training on 4 images 109 minutes). For this reason, a decision was made to
use πSVM [6], a parallel implementation of the SVM classi�er, which can
fully exploit the power of the six-core processor at our disposal. The great
advantage of πSVM is that it builds on top of LibSVM, and thus has largely
the same user interface. The speed-up achieved with this parallel imple-
mentation was very noticeable. To compare, training on 4 images (230,400
feature vectors) using LibSVM took 109 minutes, while training on 6 images
(345,600 feature vectors) with πSVM utilizing all six cores took 99 minutes.

Chapter 4 of this thesis mentions the fact that a kernel function needs
to be chosen in order to use an SVM classi�er for nonlinear classi�cation.
Unfortunately, the choice of the kernel function is something of a black art,
which is to say that no method for choosing the appropriate kernel exists and
the choice is left to the intuition of the designer. The RBF kernel was chosen
for the purposes of this thesis, as it is a popular choice in many applications
and because it provided the best results of all tested kernels.

Other things that need to be considered when using an SVM classi�er are
the optimal choices of the values of the regularization parameter C and ker-
nel parameter γ (for RBF kernel). As it turns out, �nding an optimal setting
of these parameters is of particular importance and should not be underesti-
mated, as it can very signi�cantly a�ect the �nal classi�cation performance.
To �nd the optimal parameter settings of the SVM classi�er, a grid search
method was used. A grid search takes into account all the con�gurations
of the classi�er parameters (C, γ). For every such con�guration, one SVM
model is trained and classi�cation performance is evaluated. The parameter
con�guration with the highest classi�cation performance is, naturally, the
optimal one. The values of the regularization parameter C should form an
exponentially growing sequence such as C = (2−5, 2−3, . . . , 2−15) and for the
kernel parameter the sequence γ = (2−15, 2−13, . . . , 23) is suggested [18]. Nev-
ertheless, as the available time for experiments and computational resources
were limited, utilizing this method for parameter selection would have been
prohibitively computationally expensive. For this reason, optimal parameter
values were determined by experimentation. While parameter γ was �xed,
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the value of parameter C was gradually increased only if the change con-
tributed to the classi�cation performance. In this way C = 1000 was chosen.
The same processes was repeated for kernel parameter, this time with regu-
larization parameter C �xed. The value of the kernel parameter was �nally
set to γ = 1024. As the various parameter con�gurations were tested, it is
worth noting that not only the classi�cation performance was a�ected by the
varying parameters, but also the time required for training of the classi�er.

Nonetheless, even after setting the optimal parameters (C, γ), training of
the SVM classi�er was still taking too long even for smaller datasets. As
described in Chapter 4, training of a support vector machine involves �nding
a solution to the convex optimization problem. Both LibSVM and πSVM
employ the Sequential Minimal Optimization algorithm, which is an iterative
optimization technique and therefore requires some stopping condition to be
provided. To decrease the training time, while preserving the classi�cation
performance, an optimal stopping condition of e = 2 was found to be the best.
This choice of stopping condition signi�cantly reduced the training time,
while the drop su�ered in classi�cation performance was negligible (a tenth
of a percent) compared to using the default stopping condition (e = 0.001).

7.2 Segmentation Performance Results

The performance of the SVM classi�er was evaluated for the original un�l-
tered predictions (Table 7.1) as well as the �ltered predictions (Table 7.2).
The models were trained using the parallel πSVM implementation utilizing
six CPU cores. The process of training the SVM lasted from 15 minutes
to 10 hours depending on the training set size. The �ltering of predictions
proved to be bene�cial. Figure 7.1 compares predictions obtained for the
�rst testing image. As seen in the �gure, the presence of holes and noise is
eliminated.

As expected, the values of all the performance measures are at their
lowest for the smallest training set sizes. Looking at the results in Table 7.1,
it is apparent that increasing the training set size from two images to four
images yields approximately a 3% increase in precision and a 10% increase in
recall. However, a further increase in training set size contributes only to the
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Figure 7.1: Comparison of the original un�ltered predictions (left) and pre-
dictions after the �ltering (right).

# of train. images Precision Recall F1-score Matthews

2 0.939 0.835 0.884 0.837
4 0.962 0.934 0.948 0.920
6 0.965 0.949 0.957 0.934
8 0.960 0.963 0.962 0.941
10 0.964 0.969 0.966 0.949

Table 7.1: Segmentation performance evaluation for un�ltered predictions.

classi�er's recall, F1-score and MCC. Precision levels o� at approximately
96%. In Table 7.2, we observe a decrease in precision despite an increase
in training set size. Nevertheless, the F1-score still goes up, because with
increasing training set size recall increases.

Comparison of values in Tables 7.1 and 7.2 reveals an overall increase
in all the performance measures. The F1-score starts at 90.4%, jumps to
95.4% and then slowly reaches 97.4% for the largest training dataset. The
Matthews coe�cient behaves in a similar manner. It is clear that the �ltering
of predictions de�nitely has a positive e�ect on the segmentation quality,
which comes as no surprise.
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# of train. images Precision Recall F1-score Matthews

2 0.983 0.837 0.904 0.917
4 0.985 0.933 0.958 0.960
6 0.979 0.948 0.963 0.963
8 0.975 0.962 0.968 0.967
10 0.978 0.969 0.974 0.969

Table 7.2: Segmentation performance evaluation for �ltered predictions.

7.3 Center Location Results

Undoubtedly, obtaining results of this experiment was the most computa-
tionally demanding task of all the experiments. Making use of all the six
cores of the AMD FX-6300 CPU, the training of the SVM model on the
twelve labeled images lasted approximately 12 hours.

At the end of the image sequence, there is a noticeable sudden abrupt
change in the polymer indentation recovery. Figure 7.2 shows how the seg-
mentation quality decreases when the images taken from the end of the se-
quence are used for testing. The last image that the classi�er considered was
image 50. However, the SVM was still able to generalize further down the
sequence, though not so well anymore, because no image beyond the image
50 was used for training. That is why the prediction 51 in �g. 7.2 is notice-
ably worse than the prediction 49. The �ltering step is again very helpful in
removing noise.

The graph in Figure 7.3 shows how the X and Y coordinates of the
indentation's center develop. The impact of using the �ltered predictions
can be seen at the beginning and the end of the sequence.

With the assumption in mind, that the position of the true center changes
minimally or does not change at all from image to image, all the averaged
human attempts for every image were again averaged (across images in the
sequence). This way, a single number was obtained for the whole image
sequence, which represents the mean human center position for all images
in the sequence. In the same way, the average position as determined by
the computer was calculated. To see the impact of �ltering, both un�ltered
and �ltered predictions were considered. Table 7.3 sums up the mean center
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(a) image 47 (b) image 49 (c) image 51

(d) prediction 47 (e) prediction 49 (f) prediction 51

(g) �ltered pred. 47 (h) �ltered pred. 49 (i) �ltered pred. 51

Figure 7.2: First row: input testing images indexed 47, 49 and 51. Second
row: corresponding predictions as generated by the SVM. Third row: �l-
tered predictions. More rapid change in indentation recovery is noticeable in
images 49 and 51.
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Figure 7.3: X and Y -coordinate development of the center location as
determined by human and computer for individual images in the sequence.

position in pixels and its variance for individual coordinates.
The human attempts have the highest variance in both coordinates. This

is attributed to the fact that the attempts were made by �ve human experts,
each having their own perception of the center location. The hypothesis that
using the �ltered predictions for center determination will yield more precise
estimates of the center location was con�rmed.

To further compare the results obtained by the human and the computer,
the mean human center position was taken as the reference point to which
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mean center position [px] variance [px]
X Y X Y

human 120.82 114.85 1.3485 1.9529
un�ltered 121.67 116.49 0.2546 0.9662
�ltered 121.69 116.70 0.1078 0.4999

Table 7.3: Comparison of mean center position and variance as determined
by human and computer.

all computer attempts at locating the center were compared. The di�erence
between the mean human center position and the center estimate provided
by the algorithm for every image in the sequence was calculated. Table 7.4
lists the mean and variance of the error along with the total error.

un�ltered �ltered
X Y X Y

mean absolute error 0.6831 4.6525 0.6934 4.4418
absolute error variance 0.2344 0.9662 0.1001 0.4999
sum of absolute error 20.494 139.5763 20.8009 133.2534

Table 7.4: Mean absolute error, absolute error variance and total absolute
error in center location as compared to mean human center location.

Table 7.4 reveals an interesting phenomenon. The mean absolute error is
always larger for Y -axis. One can only speculate as to why this phenomenon
occurs. Clearly, as the center position is calculated by averaging, the predic-
tions along the vertical axis were skewed in one direction or another. This
could be caused by the fact that the cross-like ridge left by the indenter
(visible in the input images) is more pronounced in the lower corner of the
indentation then it is in the upper corner, thus possibly causing the biased
position estimates.
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Conclusion

The main goal of this thesis was the design of suitable features and imple-
mentation of an algorithm for segmentation of Vickers indentation images.
Segmentation of Vickers indentations is necessary for tracking of indenta-
tion boundaries, which in turn serves for non-destructive polymer quality
evaluation.

Chapter 2 provides basic information about the Vickers hardness test.
A brief overview of image segmentation techniques can be found in chap-
ter 3. A support vector machine classi�er (Chapter 4) was chosen, because
of its robustness, as a means for solving the image segmentation problem.
This required the creation of a training dataset, which included provision of
ground-truth segmentation (labeling) by the human expert.

The design of suitable features and feature vector formation was another
necessary step. The variance features introduced in Chapter 5 have a very
good discriminatory value and proved to be suitable for the problem at hand,
as evidenced by the high segmentation performance summarized in Tables 7.1
and 7.2. Precision, recall, F1-score and Matthews Correlation Coe�cient
were measures employed for the evaluation of the image segmentation pro-
cess. Because the image segmentation was performed per-pixel, the SVM
predictions obtained were slightly noisy. To deal with this problem, �ltering
of the predictions was necessary.

The �rst experiment was designed to measure the quality of image seg-
mentation as well as the learning ability of the SVM classi�er. The highest
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segmentation quality was achieved for the largest training dataset (10 im-
ages), where the F1-score reached 97.4%. However, the segmentation quality
can be considered very good even for the smallest training set size (2 images),
especially when �ltering of predictions is employed.

The second experiment concentrated on comparing the ability of human
experts and the designed algorithm to determine the center of the indenta-
tion. The results summarized in Tables 7.3 and 7.4 indicate that the center
positions determined by the algorithm have lower variance than the human-
located center positions in both vertical and horizontal axes. It is also appar-
ent that the variance in the Y -axis is always larger than the variance in the
X-axis. Furthermore, it is evident that using the �ltered predictions lowers
the center position variance in both axes.

To conclude, microscopic images of indentations exhibit a lot of variation
in brightness, texture and lighting conditions. If the algorithm proposed in
this thesis is to be used in industry, further testing of the proposed features
is necessary on more extensive datasets.
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