
Implementing Interactive 3D Segmentation on CUDA Using
Graph-Cuts and Watershed Transformation

Jan Kolomazník
honza.kolomaznik@gmail.com

Jan Horáček
jan.horacek@gmail.com

Václav Krajíček
vajicek@cgg.mff.cuni.cz

Josef Pelikán
pepca@cgg.mff.cuni.cz

Department of Software and Computer Science Education
Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic

ABSTRACT

In this paper we present a novel scheme for a very fast implementation of volumetric segmentation using graph cuts. The
main benefit of this work is our approach to non-grid region adjacency processing on CUDA which to our knowledge has not
been done yet in any efficient way. The watershed transform radically reduces the number of vertices for graph processing.
Everything starting from watershed transformation and ending with graph cut was parallelized and is performed directly on the
GPU.

Keywords: 3D segmentation, CUDA, watersheds, min-cut, push-relabel, max flow.

1 INTRODUCTION
Segmentation of 3D volumetric images brings a vari-
ety of problems. First of all, we are processing a large
amount of data, rendering robust and precise algorithms
prohibitively expensive.

In the case of 2D, the user can resort to manual seg-
mentation if needed, while in 3D, manual segmentation
becomes a very tedious task. To address this issue, an
interactive (semi-automatic) method that would assist
the user during the segmentation process is needed. In
this paper, we propose an algorithm that segments the
data based on initial user input (Figure 1), allowing the
user to correct and improve the resulting segmentation
by providing the algorithm with further hints.

We have chosen a segmentation approach based on
the minimal graph cut algorithm. This is a well known
image processing algorithm, however its computational
complexity prevents it, at least without further improve-
ments, from being practically useful for any kind of
three dimensional data (CT, MRI). To alleviate these
issues, we first transform the input data using the wa-
tershed transformation to an induced minor of the origi-
nal graph, significantly decreasing the vertex count. We
then process this data using the massively parallel archi-
tecture of programmable GPUs.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Figure 1: User input – CT image

2 RELATED WORK
Same overall (min-cut on watersheds) methods were
chosen by authors in [8] for the interactive segmenta-
tion of liver and liver tumours, but they processed much
smaller data in a longer time.

Several approaches can be used to compute the wa-
tershed transformation (there are also several equivalent
definitions) [7] on CPU is a typical method based on
flooding. The authors in [4] used Bellman-Ford short-
est distance algorithm and cellular automata formula-
tion on parallel architectures.

The min-cut problem is connected to finding the max-
imal flow through net. We needed an easily paral-
lelizable algorithm. We therefore considered the push-
relabel algorithm [1]. There are many papers on various
implementations of the push-relabel algorithm. Most of
them are focused on segmentation of 2D images, where
the input graph is built as a neigborhood representation
of image pixels – a grid where each vertex (except on
borderlines) has a degree of 4 or 8 depending on pixel
connectivity. Several CUDA implementations exist [3]

WSCG 2012 Poster Proceedings 35



and all of them take the pixel/voxel based adjacency
graph as their input, so they can easily optimize mem-
ory access of CUDA kernels. One of our goals is to
implement on CUDA graph-cuts for general graphs.

3 OUR WORK
The reference single threaded CPU versions of the men-
tioned algorithms take minutes or at least tens of sec-
onds to provide results on our data.

Because a CPU-only implementation of the algo-
rithm is not feasible, a design decision has been made
to make use of the computational power of the pro-
grammable GPUs. Furthermore, we observe that a lot
time can be wasted by copying data between the host
computer’s main memory and the GPU’s memory, mak-
ing a GPU-only, in our case CUDA based, implemen-
tation the approach of choice. While some of the algo-
rithms, e.g. image filtering, are naturally parallelizable
and therefore suited for parallel processing, others must
be completely redesigned, ideally into the form of cel-
lular automata, which can be easily executed in CUDA.

3.1 Method Overview
Overview of method is listed in Algorithm 1.

Algorithm 1 Method overview
Denoising
Compute gradient magnitude of the image
Watershed transformation (Section 3.3)
Build region adjacency graph G (Section 3.4)
repeat

Get user input
Modify G according to user input
Compute max-flow (Section 3.5)
Find min-cut (Section 3.6)
Present result to the user

until user satisfied

3.2 CUDA
Current hardware for CUDA implements a massively
parallel architecture with the ability to run certain algo-
rithms much faster (even by one or two orders of mag-
nitude) than common CPU. However, such power is not
for free and the above-mentioned algorithms must ful-
fill many conditions to enable the hardware arithmetic
units to perform with top performance. Care must be
taken in the areas of memory access, conditional jumps
and many others. See [6] for details. We adressed these
problems in our implementation.

We use the newest CUDA framework’s features
(available in version 4.1) such as atomic operations,
C++ templates and Thrust (STL like library of datas-
tructures and algorithms executed on CUDA, see [5]).
Templates are mostly used to allow process various

input data formats, but we also pass all limits known
during compilation as template parameters, so compiler
can easily optimize cycles and local variables. The
Thrust library is used to ease up data transfer between
host and device code. We also use algorithms like
thrust::inclusive_scan and thrust::reduce.

We developed a generic memory loading scheme for
kernels executed on image data. Most of the memory
reads are coalesced and warp divergence is prevented
as much as possible. We load cube of 10x10x10 voxels
into shared memory (internal 8x8x8 cube allows coa-
lesced loading) for kernels working on 3x3x3 neighbor-
hood of voxel.

3.3 Watershed Transformation
Most of the watershed transformation algorithms are se-
rial in nature because of the internal usage of a priority
queue or a similar structure:

1. Initialize a set of markers - image local minima.
Each labeled by different ID.

2. Insert the neighbors of the marked regions into a pri-
ority queue (priority is the gray level of the image
element).

3. Pop an element from the queue. If all its neighbors
have the same label, label the element with same ID.
Insert the neighbors that are not yet in the priority
queue.

4. While the queue is not empty redo step 3.

Several parallelization aproaches for the serial ver-
sions are available (e.g. [7]), but none of them is suit-
able for GPUs. We decided to use a cellular automaton
reformulation of the problem by [4].

First of all, we need to find the markers for the water-
shed transformation (local minima of gradient magni-
tude image). This is a fairly straighforward processing
of each voxel in a 3x3x3 neighborhood. As a result we
obtain an image with nonzero-labeled regions on zeroed
background (each element with a different label). So as
the next step we need to mark all compact regions with
single label each. This is done by connected component
labeling (CCL) [2].

We implement CCL as an iterative process which
finds region equivalences (Algorithm 2). Two regions
are considered equivalent (and should have the same la-
bel) when they are neighbors. So we are marking these
equivalences in a lookup table and relabel the whole
image in every iteration. At the end we do the final re-
labeling so that we produce a continuous sequence of
labels.

Finally, in the cellular automata formulation of the
watershed transformation, we try to optimize the dis-
tance of each voxel to the closest marker. All computa-
tions are based on local information only (in our case,
33 voxels) so it is tailored for CUDA (Algorithm 3).

WSCG 2012 Poster Proceedings 36



Algorithm 2 Connected component labeling
Allocate ID equivalence lookupTable
Init lookupTable
Scan labelBu f f er for equivalences (element neigh-
bors with different nonzero label)
while lookupTable updated do

Update lookupTable
Relabel elements in labelBu f f er by equivalences
from lookupTable
Scan labelBu f f er for equivalences

end while

Algorithm 3 Watershed transformation
Initialize distance buffer (set local minima markers
to zero and rest to infinity)
while distance buffer updated do

for all voxels do
Test neigbors for shorter path

end for
end while

3.4 Construction of Adjacency Graph
The construction of the adjacency graph in CUDA is not
straightforward, as dynamic data structures are difficult
to implement effectively and using an adjacency matrix
or similar datastructure is memory consuming.

We will construct a list of all edges and their weights.
All algorithms are implemented for an undirected graph
so each edge will be present in the list only once.

As a data structure we decided to implement a hash
table using open adress linear hashing, where the edges
are stored as a special 64-bit index (32-bit for each ver-
tex). This way was chosen so we can atomically insert
edge records into the hash table.

Because we detect edges multiple times (for every
voxel on the common border), we have to check if an
edge is already inserted into the table. We either ac-
cumulate information about the image gradient, or we
insert a new edge record.

A typical situation is that we want to insert the same
edge multiple times at one moment (threads in a block
run locally) – so to prevent serialization of accesses in
global memory, we have to use a two-level approach.
The hash table is not created only in global memory,
but also in shared memory for every block. Concurrent
insertions are first handled in the context of one block
and the accumulated data from these tables is then in-
serted into the global hash table at the end of kernel
execution.

The hash table is then sorted so all records are in the
begginning of the array. Because of the design of our
graph algorithms we have not to create an adjacency list
or other representation of the vertex neighborhood. All
algorithms need only an edge soup and the vertex count.

3.5 Push-Relabel Algorithm
The basic version of the push-relabel algorithm [1] con-
sists of the operations push and relabel, which are ap-
plied as long as the corresponding conditions are met
(the algorithm ends, when neither of those operations
can be used).

Each vertex has a height (label) and excess assigned
(flow yet to be distributed to its neighbors).

During the computation of the flow net, our algorithm
constructs the so called pre-flow – defined as the flow,
where some vertices are assigned some excess flow.
When the algorithm converges the only vertices with
a nonzero excess are source and sink.

Operation push tries to decrease excess of some ver-
tex u by sending maximal possible flow through unsat-
urated incident edges. Can be applied only when:

• excess(u)> 0

• capacity(u,v)− f low(u,v)> 0

• h(u)> h(v)

Operation relabel handles situations when some vertex
has nonzero excess and cannot apply push:

• excess(u)> 0

• h(u)<= h(v),∀v,c(u,v)− f (u,v)> 0

If these conditions hold we assign minimal label to the
processed vertex so it is higher than at least one its
neighbors via unsaturated edge.

Both operations work on vertices and their neighbors.
This is problematic for the CUDA implementation tar-
geted on general graphs. CUDA kernel calls need to
be as coherent as possible (same instructions, aligned
memory accesses) to achieve maximal throughput. This
is the reason why other CUDA graph-cut implementa-
tions (e.g. [3]) work only on grid graphs , where every
vertex has the same number of neighbors (depending on
connectivity).

We solved this issue by formulating push and relabel
operations not over vertices but over edges. We process
all edges and accumulate data for vertex update after the
edge processing is finished. Atomic operations are used
to update the vertex properties (excess, label) directly
when it is needed.

CUDA implementation of push is quite straightfor-
ward (Algorithm 4), except we iterate over edges not
over vertices (we do not have information about vertex
neighbors).

Relabel must be implemented in three phases:

1. locating vertices with nonzero excess (parallel pred-
icate check)

2. checking all edges to find new label to vertices
marked in step 1 (Algorithm 5)

3. assigning new label to marked vertices

WSCG 2012 Poster Proceedings 37



Algorithm 4 Parallel push
for all Edge ∈ E do

if Label[Edge.v1]> Label[Edge.v2] then
pushFromTo(Edge.v1,Edge.v2,Edge)

else if Label[Edge.v2]> Label[Edge.v1] then
pushFromTo(Edge.v2,Edge.v1,Edge)

end if
end for

Algorithm 5 Parallel relabel – phase 2
for all Edge ∈ E do

if Edge.v1 enabled and relabel conditions hold
then

Use atomic min (so more suitable value cannot
be overriden) to assign new possible height for
Edge.v1 in buffer

else
disable Edge.v1

end if
... symetrically for opposite orientation

end for

Algorithm 6 Parallel BFS
Allocate CUDA arrays F1, F2 and W (visited)
f ill(F1, f alse)
F1[start] = true; W [start] = true
repeat

f ill(F2, f alse)
b f sKernel(E,V,F1,F2,W ) (Algorithm 7)
markFrontierAsVisited(F2,W )
swap(F1,F2)

until no vertex added to frontier

Algorithm 7 BFS kernel
for all Edge ∈ E do

if Edge.v1 ∈ F1andEdge.v2 /∈W then
F2[Edge.v2] = true
mark frontier as not empty

end if
... symetrically for opposite orientation

end for

3.6 Consolidation of Results

Min-cut can be easily obtained from the flow net. Sim-
ply execute the breadth first search (Algorithm 6) either
from the source or the sink and stop on saturated edges
– these edges are our min-cut. All vertices visited dur-
ing BFS form the first set of regions (either background
or the segmented object) while the rest is the second set.

At the end we usually apply some morphological cor-
rections (morphological opening), because the result is
an union of several watershed regions, which have a
typical property – jagged contours.

Algorithm 1003 2003 512x512x256
Markers 0.006s 0.035s 0.794s
Watersheds 0.049s 0.121s 2.648s
Min-cut 0.281s 0.436s 2.381s

Table 1: Speed of presented algorithms

4 RESULTS
We tested our implementation on NVIDIA Fermi GPU
(GTX 560). We can compare our results (Table 1)
with published results ([8], [4]). Our solution typicaly
achieves a throughput increase by factor of 10x-20x.

In comparison to the CPU implementation, our
CUDA algorithms demonstrate a 50x-70x speedup.

5 CONCLUSION
We have shown an effective implementation of a basic
segmentation method based on the watershed transfor-
mation and a push-relabel max-flow algorithm.

The problem with large number of image voxels was
partially solved by working on regions instead on im-
age elements and to decrease the computation time even
more we successfully used CUDA enabled GPUs.

The used algorithms were modified for massivelly
parallel architectures. We removed the problematic
push-relabel algorithm dependence on graph topology
(limitation of the other implementations). Our modifi-
cations also made the requirement of vertex neighbor-
hood in graph representation redundant.

ACKNOWLEDGEMENTS
This work was supported by the Grant Agency of
Charles University, Prague (project number 355311).

REFERENCES
[1] A V Goldberg and R E Tarjan. A new approach to the maximum

flow problem. In Proceedings of the eighteenth annual ACM
symposium on Theory of computing, STOC ’86, pages 136–146,
New York, NY, USA, 1986. ACM.

[2] K. A. Hawick, A. Leist, and D. P. Playne. Parallel graph com-
ponent labelling with gpus and cuda. Parallel Comput., 36:655–
678, 2010.

[3] Mohamed Hussein, Amitabh Varshney, and Larry Davis. On im-
plementing graph cuts on cuda. First Workshop on General Pur-
pose Processing on Graphics Processing Units, 2007.

[4] C. Kauffmann and N. Piche. Cellular automaton for ultra-fast
watershed transform on gpu. In Pattern Recognition, 2008. ICPR
2008. 19th International Conference on, pages 1 –4, 2008.

[5] NVIDIA Corporation. CUDA Toolkit 4.0 Thrust Quick Start
Guide, 2011.

[6] NVIDIA Corporation. NVIDIA CUDA C programming guide,
2011. Version 4.1.

[7] Jos B. T. M. Roerdink and Arnold Meijster. The watershed trans-
form: definitions, algorithms and parallelization strategies. Fun-
damenta Informaticae - Special issue on mathematical morphol-
ogy, 41(1-2):187–228, 2000.

[8] Jean Stawiaski and Etienne Decenci. Interactive liver tumor seg-
mentation using graph-cuts and watershed. Liver Tumor Segmen-
tation - MIDAS - Grand Challange, 2008.

WSCG 2012 Poster Proceedings 38


	E53-full.pdf

