POSTER: Virtual Scene as a Software Component

Radek OslejSek
Masaryk University
Botanicka 68a
602 00, Brno, Czech Republic
oslejsek@fi.muni.cz

ABSTRACT

Graphics systems use many advanced techniques that emafbel€l and visualize a virtual scene with varying level afliem.
Unfortunately, rendering algorithms significantly difierthe way how they process a virtual scene. Concrete impiéatiens
therefore usually lead to monolithic solutions. In this @awe propose the concept of a component-based scene geapdm i
independent scene graph, which can be used by many rend#rittggies simultaneously and, moreover, which can béyeasi
replaced with another implementation.

Keywords. Computer graphics, scene graph, software component.

1 INTRODUCTION visitors are very tightly interconnected with the scene

Nowadays, computer graphics offers a huge Collecgraph.They have to know the implementation details of

dthe scene graph structure as well as the implementation

tion of rendering algorithms. They differ in the speed, t individual hical obi M h
in the quality of produced images and, unfortunateI)P Individual graphical objects. Moreover, the concept

also in the way how they handle and process a virtuaﬂf visitors makes it difficult to perform changes in ex-

scene. This different nature of rendering algorithm&Sting Scene graph, e.g. extending the scene graph with

poses great difficulty in developing a unified render® NeW t):jpe_ofgrapmcal objects, featgres, e_tc. .

ing architecture, i.e. the architecture, which is able to rgn ering SVStr?”;{ evfen ahgenerlcausmg alf\nsnor-

handle a wide variety of rendering techniques via just ased scene grapn therefore as to adapt Itself to con-
crete scene graph implementation and the scene graph

single unified interface. In spite of the difficulties, there he i bl f th deri
exist several experimental architectures, e.g. those comes the inseparable part of the rendering system.

[Fel95, SS95, DHO2, 0S03]. These architectures af10reover, the scene graph usually has to run on the

tempt to integrate more illumination strategies into %S]{:\me computer as the rendering system just due to the
single unified system. igh encapsulation and interconnection.

All rendering algorithms share one common con- Our goal is to make a scene graph as an independent

cept calledscene graph- a tree-based container of software component [CD04]. Behaviour of a software

virtual object. Well-designed scene graph is the pacomponent is precisely defined by the interface. On the

other hand, internal implementation of the behaviour is

sic building block of any generic rendering architec- limited . h f
ture. Precisely proposed scene graphs can be foufigt limited. Having a scene graph as a software compo-

in [Opea, Opeb, Rei02, OS05]. Many of them ardrent could bring many advantages. It could be easy to

based on theisITOR design pattern [GHJIV95, Bus96], employ many heterogeneous rendering algorithms on

which enables to manage the scene traversal and inspg?:(—e sgmefsceneljust ch_ausle they can sr;arhe the com-
tion comfortably. mon interface. Internal implementation of the scene

Visitors represent an individual operations over theCOUId be easily changed without the impact to the ex-

scene, e.g. ray-intersection detection, shading opeﬂé-t'ng algorithms. A component-based scene could run

tion, etc., with high level of encapsulation. Once theé" de_dicated cqmputer and .COUId b_e shared by more ap-

visitor (operation) is applied to the root node of a Scengllc?tlons, e.g. in collaborative environments of virtual

graph then the operation is automatically applied to al®@ |ty._ I I .

subnodes and thus to the whole scene. On the other "€cise definition of a unified interface is the key for

hand, this high level of encapsulation means that th\'s-.\l_JCCeSSfUI propo_sz_;ll of comppnent—based scene g_ra_ph.
Simultaneously, it is very serious challenge and diffi-

cult task. Unfortunately, the high level of encapsula-

tion of visitors disqualify them from their direct usage

Permission to make digital or hard copies of all or part okthi pecause components have to be more autonomous and

work for personal or classroom use is granted without feeigel ; P :
that copies are not made or distributed for profit or comnagrci mdependent of their |mplementat|on.

advantage and that copies bear this notice and the fuliasitan the
first page. To copy otherwise, or republish, to post on sereerto 2 SCENE GRAPH COMPONENT
redistribute to lists, requires prior specific permissiowl/ar a fee. Any operation over the scene has to perform two basic

Copyright UNION Agency - Science Press, Plzen, Czech Rapubl tasks. It has to traverse the scene graph and inspect indi-

WSCG2008 Poster papers 33 ISBN 978-80-86943-17-6

vidual nodes. The visitor-based solution do both these L linspection
. =5 Nod - - —) IGeometry
tasks in a single step, as discussed above. To find mte ™> . :

. . geometry .
faces suitable for software component we have to resign 4 material(in long ID) —O Material
to the gutomatlc application of scene operations inside :ta;'x“:szga's () rexture
the entire scene graph container. Instead, we have to « transformation O ransformation
separate the traversal and nodes inspection tasks and *Zr:fittag;em

i 4 diffuse .
thus allow the invoker to gradually traverse the scene & specularBRDF —O iEmittance
graph tree node by node and to inspect nodes individu- BTDF —(1BsDF

% BSSRDF
ally.

Separation of the traversal from nodes inspection
slightly breaks the strict encapsulation but enables us
to manage scene operations outside of the scene. It al-
lows to build different rendering strategies over the sin- Actually we have defined 6 groups of properties: (1)
gle unified scene graph, because the strategy can fullsometrydefines shape of a virtual object in various
control behaviour of its operations. ways, e.g. as a polygonal mesh, analytic surface, etc.
(2) material determines coefficients for energy reflec-

Figure 2: Inspection interface

<<component>> a) : ;
. | Scene Graph tion and refraction, e.g. RGB color, transparency, etc.
raversa . .

c parsers (3) emittanceis necessary to quel sources of energy.

objects management (4) BSDFs, Bidirectional Scattering Distribution Func-

] tions determine what portion of incoming energy is
inspection mngmt reflected back to the scene with respect to incoming

linspection events handling and outgoing directions and what portion is transmit-

et ted through translucent objects. ¢Egnsformationare
vents

represented by 4x4 transformation matrices and allows
manipulation with groups of objects in the space. Uni-
form management of matrices is clear and well-known
Fig. 1 shows the basic component diagram of thand thus uninteresting. We therefore omit the 3D trans-
scene graph. Thlraversalandlinspectioninterfaces formations from detail discussion. (@xturesare a
are the key interfaces used for the scene traversal asdmmon way to define color patterns on a surface. This
nodes inspection respectively and they are discuss@goperty is also omitted from detail discussion.
in the rest of this paper. However, a practically us- Our complete inspection interface consists of two
able scene has to provide a lot of another useful opertevels, as shown in Fig. 2. Thénspectionpresents
tions, e.g. those related to the scene graph managemehg coarse-grained interface related to the actual node
events management, etc. They are only suggested in thka scene graph. Any scene graph node has to im-
diagram for completeness. plement this interface. ThHnspectionitself is very
simple. It just contains operations related to above dis-
3 SCENE GRAPH TRAVERSAL cussed categories, each operation returning a relevant
Tree structure of scene graphs enables us do defindime-grained interface of the category. An invoker se-
simple but unified interface for the traversal. A clientlects required inspection category first, calls appropri-
traversing the scene has available a pointer to the sceate operation and then exploits returned fine-grained
graph tree as well as a private stacks and pipes enablimgerface for final inspection. If some property is not
to store and restore the pointer. The client can instapresent in the node, e.g. the node has no texture de-
tiate various stacks and pipes, use them to store afided, then the fine-grained interface retrieval fails and
restore position in the tree and thus implement varithe invoker continues with another inspections. In what
ous traversal strategies, e.g. depth-first or breadth-firtllows we discuss individual fine-grained interfaces.
search. Because every client has its own pointer an
the set of stacks and pipes, there can be many clien sl Geometry
traversing the scene simultaneously. Geometry represents shape of a surface. Computer
graphics uses various kinds of geometry description,
4 INSPECTION OF NODES e.g. analytical surfaces, triangle meshes, etc. Our aim
Scene graph nodes present a wide range of graphidalto not restrict possible implementations of geome-
information, e.g. description of shapes, material, trandry. The unified interface in Fig. 3 therefore consists
formations in space, etc. To handle all these miscebf only a general operations, which allow to “touch”
laneous properties in a uniform way it is necessary tthe surface in a sense and to retrieve the necessary in-
classify them in smaller groups and to define specifitormation about the shape. The set of operations cover
interfaces for these groups. a ray-intersection inspection, random sampling, basic

Figure 1: Scene graph component

WSCG2008 Poster papers 34 ISBN 978-80-86943-17-6

volume and spatial information retrieval as well as col4.3 Emittance of Energy

lision detection. Light sources pose very important but very complicated

part of virtual scene. A light source can by understood
as an object emitting energy. Description of the emit-
4 numFragments & raylntersection tance can vary, but we can find several common princi-

(2 [TriangularMesh =~ — . () IGeometry

% getFragment % mapToUV X . X .
4 randomSample ples that enable us to define emission in a uniform way.
4 randomDirection
“ extent
* % centroid () IEmittance (2 IBSDF
£ IMeshFragment s radius -
* separation % sourcelocation energy
& numVertices 4 distance % purelntensity % islsotropic
& vertices % mesh % beamDirection 4 isDiffuse
“ normals 4 fadepower % importanceSample
% fadeDistance % importanceSamplelnv

% uvCoords
% streamlInterpretaion

“ intensityInPoint
% intensityInDirection
4 stochasticEmittion

Figure 3: Geometry interface

Figure 5: Emittance (left) and BSDF (right)

Many existing graphical algorithms are based on
polygonal surfaces. Any kind of geometry should be The basic characteristics of any emmitance consists
therefore transformable to this approximate descripaf space location, beam direction, initial intensity
tion. The mesh()operation instantiates a triangular(color) and attenuation. Unifid&mittanceinterface in
mesh, represented by thdringularMesh interface Fig. 5 therefore contains appropriate inspection meth-
in Fig. 3. Unified inspection of this mesh is ensuredds. Attenuation is controlled by two factors. Fade
by using the mechanism known from the OpenGldistance is used to specify the distance at which the full
[WNDS99], for instance. Externally, the mesh is comdight intensity arrives, while fade power determines the
posed of a stream of vertices, normals and mappirfglloff rate beyond the fade distance.
coordinates. Streams are interpreted &gaangle strip, intensitylnPoint(andintensitylnDirection()methods
triangle fun etc. Thus, the concrete interpretationcomputes concrete amount of energy in a space point.
enables to reconstruct original triangles from thestochasticEmission(pperation casts a ray stochasti-
streams. cally with respect to the properties of the light source.

42 Material 44 BSDFs

Material characteristics are in the computer graphicBSDF, Bidirectional Scattering Distribution Function,
expressed as n-tuples of real numbers, e.g. RGB caletermines what portion of incoming energy is reflected
ors, transparency, roughness, etc. But because diffdrack to the scene from a reflective surface or what por-
ent clients and algorithms can use different names eveion is transmitted through a translucent material. There
for the same material properties, then our unified modelxist three variants of BSDF: BRDF, BSDF and BSS-
is based on the name-service concept similar to thRDF. They differ only in details and thus the BSDF can
Domain Name Service (DNS) of the Internet. Clientbe taken as their unified interface.

can register various materials under various names andenergy()method in Fig. 5 computes the portion of
aliases at runtime and thus share these names with asflected or transmitted energyslsotropic() function
other clients. Concrete instances of materials inside distinguishes isotropic and anisotropic surfaces.

scene graph are then easily identifiable by their com- Some BRDFs do not depend on the outgoing direc-

mon natural names in the unified way. tion but distributes the energy omnidirectionally. e.g.
Lambertian function. They are called to perfectly

© IMaterialNamespace © IMaterial diffuse Many real algorithms exploit this feature to
4 registerNewMaterial | _ % numberOfCoefficients accelera_te energy qISt”bUtlon prOC-ESS. Té[élffuse()
« setAlias & value method informs an invoker about this property.
& lookuplD & scaledValue The rest of thdBSDF methods is used by stochastic
4 lookupNames “ average K . K)
& hasName algorithms of energy distribution.

Single virtual object can have assigned all three types
of distribution functions. The basic coarse-grained
inspection interfacélnspectiontherefore contains in-

IMaterial interface in Fig. 4 represents an n-tuplespection methods for these three variants of distribution
of concrete material coefficients, while thidaterial- functions. But all these variants share one fine-grained
Namespaceterface provides the names registration. inspection interfacé8SDF.

Figure 4: Material interface

WSCG2008 Poster papers 35 ISBN 978-80-86943-17-6

mmmmmmmm

12 36 132 516 2052 8196 3272 131076 524292 & 2 1 92 821 7382 66431 597872
#primitives = #primitives

Figure 6: Fractal scenes used for efficiency tebteuntains(left) andSphereflakéright)

5 EXPERIMENTAL RENDERING inspection operations. On the other hand, proposed
ARCHITECTURE inspection operations are sufficiently general for wide
range of rendering strategies, from real-time local il-

To confirm the results of analysis we designed two Xumination to photorealistic image synthesis. The inter-

pe_lt":n eg:atl Illitérrarrlesi.m lement ne araph using in faces therefore enable to develop a scene as an indepen-
enrs ary Impements scene graph using iy e . sofware component, which is very useful mainly
spection interface as discussed in this paper. Actuall

the library does not represent real software com onem distributed and collaborative environments.
ry P P Inspection and traversal interfaces present only

funning under some kind of component system, . fragment of all required functionality. Another

CORBA, butit is a standalone C++ library Implementfunified scene graph interfaces, e.g. scene creation and

ing discussed interfaces. This library was develpped Irr}daintenance, event handling, etc., have to be proposed.
order to ensure that proposed concept is practical an

functional. Translation of this standalone library into7 ACKNOWLEDGMENTS

the real CORBA componentis in progress. This work has been supported by the Czech Science

The second library implements various renderinqioundation under Contract No. GA 201/06/P247 and
strategies, e.g. few variants of local iIIumination,Whit—the Ministry of Education Yomljth and Sports of the

ted ray tracing, Monte Carlo ray tracing and photo . }
mapping. This library is used to check that proposerg:zeCh Republic under the research program LC-06008.

inspection interface of a scene graph is sufficientfREFERENCES

general. [Bus96] F. BuschmanrPattern-Oriented Software Architecture:
The most important result of this project is the exis- A System of Patterndohn Wiley & Sons, 1996.

tence of the unified component-based scene graph. BiGP04] John Cheesman and John Daniel#ML Components

practical usage depends mainly on the rendering speed. Addison-Wesly, 2004.

Although our scene graph is not yet implemented as [QHOZ] J. Déllner and K. Hinrichs. A generic rendering syste

IEEE Trans. Visualization & C(38(2):99-118, 2002.
real CORBA software component, we performed sev- _GB(: .
| preliminary efficiency tests [Fel95] D. W. Fellner. Mrt - an extensible platform for 3d ig@
eralp ry Yy ' synthesis. Computer Graphics Lab., Dept. of Computer

Implementation of the local illumination is based on Science, University of Bonn, Germany, December 1995.
the OpenGL and thus we did not measure any signifisHives] E. Gamma, R. Helm, R. Johnson, and J. Viissides.
cant decrease of performance in comparison with native Design Patterns Elements of Reusable Object-Oriented

OpenGL applications. Software Addison-Wesley, 1995.
Ray tracing algorithm was compared with the POVIOpea] Open scene graph. http://openscenegraph.sotgegaiet/.
Ray system [Tea91]. Fig. 6 shows an overview of testelPPebl ~ Opensg. http:/iwww.opensg.org/.

scenes and the rendering times. Tests were perform&f03] Radek OSlejSek andilSochor. Generic graphics archi-
tecture. InTheory and Practice of Computer Graphics

on Pentium 4 3.0GHz, 1GB RAM, image re_sglunon pages 105-112. IEEE Computer Society, June 2003.
800x600. Results of the_ tests show ‘?.lessl’ eff|C|e.ncy. %505] Radek OslejSek andfidBochor. A flexible, low-level
our system. The reason is that the unified inspection in- scene graph traversal with explorers. Spring Confer-
terface does not allow direct access into the scene graph ence on Computer Graphicgages 194-201. Bratislava

: Comenius University, May 2005.

Dirk Reiners. A flexible and extensible traversairfre-
work for scenegraph systems. @penSG Symposiym

and then forbids implementation of various acceleration
tricks. Memory requirements are very similar for both(R€02]

the systems. 2002.
[SS95] P. Slusallek and H.-P. Seidel. Vision - an architecfar
6 CONCLUSION AND FUTURE global illumination calculationslEEE Trans. Visualiza-
WORK tion & Computer Graphics1(1), 1995.

. " . [Tea91] POV Team. Persistency of vision ray tracer (povsray
We discussed a unified interface of the scene traversal version 1.0. Technical report, 1991.

and inspection. This interface does not restrict implenynpsgg] M. Woo, J. Neider, T. Davis, and D. Shrein@penGL
mentation of the scene graph, just prescribe necessary Programming GuideAddison-Wesley, 1999.

WSCG2008 Poster papers 36 ISBN 978-80-86943-17-6

	WSCG2008_Poster_Numbered.pdf
	C03-full.pdf
	C03-full.pdf

	F47-full.pdf

