
POSTER: Virtual Scene as a Software Component

Radek Ošlejšek
Masaryk University

Botanicka 68a
602 00, Brno, Czech Republic

oslejsek@fi.muni.cz

ABSTRACT

Graphics systems use many advanced techniques that enable to model and visualize a virtual scene with varying level of realism.
Unfortunately, rendering algorithms significantly differin the way how they process a virtual scene. Concrete implementations
therefore usually lead to monolithic solutions. In this paper we propose the concept of a component-based scene graph, i.e. an
independent scene graph, which can be used by many renderingstrategies simultaneously and, moreover, which can be easily
replaced with another implementation.

Keywords: Computer graphics, scene graph, software component.

1 INTRODUCTION
Nowadays, computer graphics offers a huge collec-
tion of rendering algorithms. They differ in the speed,
in the quality of produced images and, unfortunately,
also in the way how they handle and process a virtual
scene. This different nature of rendering algorithms
poses great difficulty in developing a unified render-
ing architecture, i.e. the architecture, which is able to
handle a wide variety of rendering techniques via just a
single unified interface. In spite of the difficulties, there
exist several experimental architectures, e.g. those in
[Fel95, SS95, DH02, OS03]. These architectures at-
tempt to integrate more illumination strategies into a
single unified system.

All rendering algorithms share one common con-
cept calledscene graph– a tree-based container of
virtual object. Well-designed scene graph is the ba-
sic building block of any generic rendering architec-
ture. Precisely proposed scene graphs can be found
in [Opea, Opeb, Rei02, OS05]. Many of them are
based on theVISITOR design pattern [GHJV95, Bus96],
which enables to manage the scene traversal and inspec-
tion comfortably.

Visitors represent an individual operations over the
scene, e.g. ray-intersection detection, shading opera-
tion, etc., with high level of encapsulation. Once the
visitor (operation) is applied to the root node of a scene
graph then the operation is automatically applied to all
subnodes and thus to the whole scene. On the other
hand, this high level of encapsulation means that the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency - Science Press, Plzen, Czech Republic.

visitors are very tightly interconnected with the scene
graph. They have to know the implementation details of
the scene graph structure as well as the implementation
of individual graphical objects. Moreover, the concept
of visitors makes it difficult to perform changes in ex-
isting scene graph, e.g. extending the scene graph with
a new type of graphical objects, features, etc.

A rendering system, even a generic, using a visitor-
based scene graph therefore has to adapt itself to con-
crete scene graph implementation and the scene graph
becomes the inseparable part of the rendering system.
Moreover, the scene graph usually has to run on the
same computer as the rendering system just due to the
high encapsulation and interconnection.

Our goal is to make a scene graph as an independent
software component [CD04]. Behaviour of a software
component is precisely defined by the interface. On the
other hand, internal implementation of the behaviour is
not limited. Having a scene graph as a software compo-
nent could bring many advantages. It could be easy to
employ many heterogeneous rendering algorithms on
the same scene just because they can share the com-
mon interface. Internal implementation of the scene
could be easily changed without the impact to the ex-
isting algorithms. A component-based scene could run
on dedicated computer and could be shared by more ap-
plications, e.g. in collaborative environments of virtual
reality.

Precise definition of a unified interface is the key for
successful proposal of component-based scene graph.
Simultaneously, it is very serious challenge and diffi-
cult task. Unfortunately, the high level of encapsula-
tion of visitors disqualify them from their direct usage
because components have to be more autonomous and
independent of their implementation.

2 SCENE GRAPH COMPONENT
Any operation over the scene has to perform two basic
tasks. It has to traverse the scene graph and inspect indi-

WSCG2008 Poster papers 33 ISBN 978-80-86943-17-6



vidual nodes. The visitor-based solution do both these
tasks in a single step, as discussed above. To find inter-
faces suitable for software component we have to resign
to the automatic application of scene operations inside
the entire scene graph container. Instead, we have to
separate the traversal and nodes inspection tasks and
thus allow the invoker to gradually traverse the scene
graph tree node by node and to inspect nodes individu-
ally.

Separation of the traversal from nodes inspection
slightly breaks the strict encapsulation but enables us
to manage scene operations outside of the scene. It al-
lows to build different rendering strategies over the sin-
gle unified scene graph, because the strategy can fully
control behaviour of its operations.

Figure 1: Scene graph component

Fig. 1 shows the basic component diagram of the
scene graph. TheITraversalandIInspectioninterfaces
are the key interfaces used for the scene traversal and
nodes inspection respectively and they are discussed
in the rest of this paper. However, a practically us-
able scene has to provide a lot of another useful opera-
tions, e.g. those related to the scene graph management,
events management, etc. They are only suggested in the
diagram for completeness.

3 SCENE GRAPH TRAVERSAL
Tree structure of scene graphs enables us do define a
simple but unified interface for the traversal. A client
traversing the scene has available a pointer to the scene
graph tree as well as a private stacks and pipes enabling
to store and restore the pointer. The client can instan-
tiate various stacks and pipes, use them to store and
restore position in the tree and thus implement vari-
ous traversal strategies, e.g. depth-first or breadth-first
search. Because every client has its own pointer and
the set of stacks and pipes, there can be many clients
traversing the scene simultaneously.

4 INSPECTION OF NODES
Scene graph nodes present a wide range of graphical
information, e.g. description of shapes, material, trans-
formations in space, etc. To handle all these miscel-
laneous properties in a uniform way it is necessary to
classify them in smaller groups and to define specific
interfaces for these groups.

Figure 2: Inspection interface

Actually we have defined 6 groups of properties: (1)
geometrydefines shape of a virtual object in various
ways, e.g. as a polygonal mesh, analytic surface, etc.
(2) material determines coefficients for energy reflec-
tion and refraction, e.g. RGB color, transparency, etc.
(3) emittanceis necessary to model sources of energy.
(4) BSDFs, Bidirectional Scattering Distribution Func-
tions, determine what portion of incoming energy is
reflected back to the scene with respect to incoming
and outgoing directions and what portion is transmit-
ted through translucent objects. (5)transformationsare
represented by 4x4 transformation matrices and allows
manipulation with groups of objects in the space. Uni-
form management of matrices is clear and well-known
and thus uninteresting. We therefore omit the 3D trans-
formations from detail discussion. (6)texturesare a
common way to define color patterns on a surface. This
property is also omitted from detail discussion.

Our complete inspection interface consists of two
levels, as shown in Fig. 2. TheIInspectionpresents
the coarse-grained interface related to the actual node
of a scene graph. Any scene graph node has to im-
plement this interface. TheIInspectionitself is very
simple. It just contains operations related to above dis-
cussed categories, each operation returning a relevant
fine-grained interface of the category. An invoker se-
lects required inspection category first, calls appropri-
ate operation and then exploits returned fine-grained
interface for final inspection. If some property is not
present in the node, e.g. the node has no texture de-
fined, then the fine-grained interface retrieval fails and
the invoker continues with another inspections. In what
follows we discuss individual fine-grained interfaces.

4.1 Geometry
Geometry represents shape of a surface. Computer
graphics uses various kinds of geometry description,
e.g. analytical surfaces, triangle meshes, etc. Our aim
is to not restrict possible implementations of geome-
try. The unified interface in Fig. 3 therefore consists
of only a general operations, which allow to “touch”
the surface in a sense and to retrieve the necessary in-
formation about the shape. The set of operations cover
a ray-intersection inspection, random sampling, basic

WSCG2008 Poster papers 34 ISBN 978-80-86943-17-6



volume and spatial information retrieval as well as col-
lision detection.

Figure 3: Geometry interface

Many existing graphical algorithms are based on
polygonal surfaces. Any kind of geometry should be
therefore transformable to this approximate descrip-
tion. The mesh()operation instantiates a triangular
mesh, represented by theITringularMesh interface
in Fig. 3. Unified inspection of this mesh is ensured
by using the mechanism known from the OpenGL
[WNDS99], for instance. Externally, the mesh is com-
posed of a stream of vertices, normals and mapping
coordinates. Streams are interpreted as atriangle strip,
triangle fun, etc. Thus, the concrete interpretation
enables to reconstruct original triangles from the
streams.

4.2 Material

Material characteristics are in the computer graphics
expressed as n-tuples of real numbers, e.g. RGB col-
ors, transparency, roughness, etc. But because differ-
ent clients and algorithms can use different names even
for the same material properties, then our unified model
is based on the name-service concept similar to the
Domain Name Service (DNS) of the Internet. Client
can register various materials under various names and
aliases at runtime and thus share these names with an-
other clients. Concrete instances of materials inside a
scene graph are then easily identifiable by their com-
mon natural names in the unified way.

Figure 4: Material interface

IMaterial interface in Fig. 4 represents an n-tuple
of concrete material coefficients, while theIMaterial-
Namespaceinterface provides the names registration.

4.3 Emittance of Energy

Light sources pose very important but very complicated
part of virtual scene. A light source can by understood
as an object emitting energy. Description of the emit-
tance can vary, but we can find several common princi-
ples that enable us to define emission in a uniform way.

Figure 5: Emittance (left) and BSDF (right)

The basic characteristics of any emmitance consists
of space location, beam direction, initial intensity
(color) and attenuation. UnifiedIEmittanceinterface in
Fig. 5 therefore contains appropriate inspection meth-
ods. Attenuation is controlled by two factors. Fade
distance is used to specify the distance at which the full
light intensity arrives, while fade power determines the
falloff rate beyond the fade distance.

intensityInPoint()andintensityInDirection()methods
computes concrete amount of energy in a space point.
stochasticEmission()operation casts a ray stochasti-
cally with respect to the properties of the light source.

4.4 BSDFs

BSDF, Bidirectional Scattering Distribution Function,
determines what portion of incoming energy is reflected
back to the scene from a reflective surface or what por-
tion is transmitted through a translucent material. There
exist three variants of BSDF: BRDF, BSDF and BSS-
RDF. They differ only in details and thus the BSDF can
be taken as their unified interface.

energy()method in Fig. 5 computes the portion of
reflected or transmitted energy.isIsotropic() function
distinguishes isotropic and anisotropic surfaces.

Some BRDFs do not depend on the outgoing direc-
tion but distributes the energy omnidirectionally. e.g.
Lambertian function. They are called to beperfectly
diffuse. Many real algorithms exploit this feature to
accelerate energy distribution process. TheisDiffuse()
method informs an invoker about this property.

The rest of theIBSDFmethods is used by stochastic
algorithms of energy distribution.

Single virtual object can have assigned all three types
of distribution functions. The basic coarse-grained
inspection interfaceIInspectiontherefore contains in-
spection methods for these three variants of distribution
functions. But all these variants share one fine-grained
inspection interfaceIBSDF.

WSCG2008 Poster papers 35 ISBN 978-80-86943-17-6



Figure 6: Fractal scenes used for efficiency tests:Mountains(left) andSphereflake(right)

5 EXPERIMENTAL RENDERING
ARCHITECTURE

To confirm the results of analysis we designed two ex-
perimental libraries.

The first library implements scene graph using in-
spection interface as discussed in this paper. Actually,
the library does not represent real software component
running under some kind of component system, e.g.
CORBA, but it is a standalone C++ library implement-
ing discussed interfaces. This library was developed in
order to ensure that proposed concept is practical and
functional. Translation of this standalone library into
the real CORBA component is in progress.

The second library implements various rendering
strategies, e.g. few variants of local illumination, Whit-
ted ray tracing, Monte Carlo ray tracing and photon
mapping. This library is used to check that proposed
inspection interface of a scene graph is sufficiently
general.

The most important result of this project is the exis-
tence of the unified component-based scene graph. But
practical usage depends mainly on the rendering speed.
Although our scene graph is not yet implemented as a
real CORBA software component, we performed sev-
eral preliminary efficiency tests.

Implementation of the local illumination is based on
the OpenGL and thus we did not measure any signifi-
cant decrease of performance in comparison with native
OpenGL applications.

Ray tracing algorithm was compared with the POV-
Ray system [Tea91]. Fig. 6 shows an overview of tested
scenes and the rendering times. Tests were performed
on Pentium 4 3.0GHz, 1GB RAM, image resolution
800x600. Results of the tests show a less efficiency of
our system. The reason is that the unified inspection in-
terface does not allow direct access into the scene graph
and then forbids implementation of various acceleration
tricks. Memory requirements are very similar for both
the systems.

6 CONCLUSION AND FUTURE
WORK

We discussed a unified interface of the scene traversal
and inspection. This interface does not restrict imple-
mentation of the scene graph, just prescribe necessary

inspection operations. On the other hand, proposed
inspection operations are sufficiently general for wide
range of rendering strategies, from real-time local il-
lumination to photorealistic image synthesis. The inter-
faces therefore enable to develop a scene as an indepen-
dent software component, which is very useful mainly
in distributed and collaborative environments.

Inspection and traversal interfaces present only
a fragment of all required functionality. Another
unified scene graph interfaces, e.g. scene creation and
maintenance, event handling, etc., have to be proposed.

7 ACKNOWLEDGMENTS
This work has been supported by the Czech Science
Foundation under Contract No. GA 201/06/P247 and
the Ministry of Education, Youth and Sports of the
Czech Republic under the research program LC-06008.

REFERENCES
[Bus96] F. Buschmann.Pattern-Oriented Software Architecture:

A System of Patterns. John Wiley & Sons, 1996.

[CD04] John Cheesman and John Daniels.UML Components.
Addison-Wesly, 2004.

[DH02] J. Döllner and K. Hinrichs. A generic rendering system.
IEEE Trans. Visualization & CG, 8(2):99–118, 2002.

[Fel95] D. W. Fellner. Mrt - an extensible platform for 3d image
synthesis. Computer Graphics Lab., Dept. of Computer
Science, University of Bonn, Germany, December 1995.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[Opea] Open scene graph. http://openscenegraph.sourceforge.net/.

[Opeb] Opensg. http://www.opensg.org/.

[OS03] Radek Ošlejšek and Jiří Sochor. Generic graphics archi-
tecture. InTheory and Practice of Computer Graphics,
pages 105–112. IEEE Computer Society, June 2003.

[OS05] Radek Ošlejšek and Jiří Sochor. A flexible, low-level
scene graph traversal with explorers. InSpring Confer-
ence on Computer Graphics, pages 194–201. Bratislava
: Comenius University, May 2005.

[Rei02] Dirk Reiners. A flexible and extensible traversal frame-
work for scenegraph systems. InOpenSG Symposium,
2002.

[SS95] P. Slusallek and H.-P. Seidel. Vision - an architecture for
global illumination calculations.IEEE Trans. Visualiza-
tion & Computer Graphics, 1(1), 1995.

[Tea91] POV Team. Persistency of vision ray tracer (pov-ray),
version 1.0. Technical report, 1991.

[WNDS99] M. Woo, J. Neider, T. Davis, and D. Shreiner.OpenGL
Programming Guide. Addison-Wesley, 1999.

WSCG2008 Poster papers 36 ISBN 978-80-86943-17-6


	WSCG2008_Poster_Numbered.pdf
	C03-full.pdf
	C03-full.pdf

	F47-full.pdf


