
Automatic Generation of User Interfaces using the
Set Description Language

Edoardo
Ardizzone

DINFO, Università
degli Studi di

Palermo, Viale delle
Scienze, 90128
Palermo, Italy

ardizzon@unipa.it

Vincenzo
Cannella

DINFO, Università
degli Studi di

Palermo, Viale delle
Scienze, 90128
Palermo, Italy

peri@csai.unipa.it

Daniele Peri
DINFO, Università

degli Studi di
Palermo, Viale delle

Scienze, 90128
Palermo, Italy

peri@csai.unipa.it

Roberto Pirrone
DINFO, Università

degli Studi di
Palermo, Viale delle

Scienze, 90128
Palermo, Italy

pirrone@unipa.it

ABSTRACT
We present a paradigm to generate automatically graphical user interfaces from a formal description of the data
model following the well-known model-view-control paradigm. This paradigm provide complete separation
between data model and interface description, setting the programmer free from the low-level aspects of
programming interfaces, letting him take care of higher level aspects. The interface along with the data model is
described by means of a formal language, the Set Description Language. We also describe the infrastructure
based on this paradigm we implemented to generate graphical user interfaces for generic applications. Moreover,
it can adapt the user interface of a program to the needs derived from the type of data managed by the user from
time to time.

Keywords
Graphical User Interface, Model-View-Control paradigm, description language

1. INTRODUCTION
Usually, the specification of a project software
development and the description of a program
properties are expressed through proper language,
called specification language.
In this case, using a notation defined in a rigorous
way in its syntactic and semantic aspect makes it
possible to write the specifications precisely.
The main advantage of such a choice is the
opportunity of automating the manipulation of
specifications. For instance, along with the lines of
what a compiler does, a specification can be analyzed
syntactically and semantically to obtain a direct
execution of the specifications themselves.
It is useful to note that the use of rigorous
mathematical foundations does not imply necessarily
the adoption of a difficult syntax. It is instead
possible sometimes to create a specification language
with a simple but equally expressive structure.

A kind of specification is the so-called descriptive
specification.
It gives a definition of an application in a very
abstract manner, through the definition of the
properties that the application must have.
The method of descriptive specification starts from a
definition of the state space, by giving a description
of the admissible states for the modeled system in a
more implicit and general way, through the use of
constraints and properties expressed through an
algebraic and logical formalism.
In this field, for some time the utilization of
languages founded on first order logic has spread.
As proved, this kind of logic is a good basis for a
formalism aimed to specify program requirements.
A program specification is given, using the logic, by
means of the relationship between the input and the
output data of the program.

Fundamentals on the Model-view-control
Paradigm Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

WSCG Posters proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

The model-view-control (MVC) paradigm [DixHCI,
Kra88] is one of the most widely used assumptions
about the software architecture in the design of
graphical user interfaces.
Though this paradigm it is possible to link efficiently
and successfully a user-interface to the underlined
data model.

According to MVC, the input of the user, the
description of the links between the components of
the real world, and the reply given to the user are
explicitly separated and managed by three different
objects, each of them specialized in one task.
The view has the task of presenting the data to the
user, for instance, as a mixture of text and graphics.
When the model changes, the view automatically
updates itself in order to reflect the changes in the
data model. The controller is instead the part of the
interface that lets the user to change the model data.
It receives the input from the user and instructs the
model to achieve the actions based on that input. The
controller maps the user action with the application
reply.
The model encapsulates the data and the functions
managing them: in this way, it may capture not only
a process or a system state but also its evolution.
The model thus deals with behavior and data of the
application domain, replies to the request for
information concerning its state, usually through the
view, and modifies its state accordingly to the orders
received from the controller.

2. THE “CONTEXT” ABSTRACTION
In order to achieve a description of the data model
that could be used in an automatic user interface
generation infrastructure we defined the “Context”
abstraction [Ard02].
A context is defined as a logical structure made up by
a set of controllers and views. Each of them deals
with a set of variables defined by means of their
respective constraints. These constraints can be also
parametric. During the creation of the context itself
these parameters are bound to their current values.
Every context can contain another context, thus the
set of variables can be seen as a vector.
The simplicity of such a structure for the variable set
guarantees a better control on the semantics of their
definitions. In this way, the risk of having eventual
loops in the definitions of variables is avoided.
The contexts being one inside the other form a family
tree from father to son, and every son eventually
inherits some features from some or all ancestors.
The state space of a context is defined through the
definition set of the variables of the context and the
state spaces of the contexts inside it.
The definition of every variable in a context can be
subject to some or all parameters of the context.
On the contrary, each controlled variable is logically
independent from each other. That is caused by the
fact that listing the controlled variables does not
establish a hierarchy. Their priority degree is equal to
the context and so the listing sequence is indifferent.
This choice cannot solve the ambiguity caused by a
programmer erroneously defining two reciprocally

dependent control variables while defining the
context.
In this case, a sort of control loop would be created,
which makes no sense, while in a good context
design a variable C2 controlling another one C1 is
defined in a context that is external with respect to
the one containing C1.

Figure 1

The vector organization of the variables of a context
state space makes the recognition of such errors
easier, being also a good guide to the programmer.
Additionally, the occurrence check, which is, in
general, an onerous computational task, is not
needed.
These considerations can also be made for the view
variables.
On the contrary, there is a hierarchy between the
control and the view variables of the context with the
latter depending on the first.
Sometimes, for instance, the same variable belongs
both to the control variable list and to the view
variable list.
In this case setting a value for the control variable is
equal to setting the same value for the view variable.
Therefore, the values inserted by the user are directly
shown.
Differently, it may happen that the dependence of the
view on the control variable is mediated by one or
more conditions between the two variables.
Therefore, a view variable can also be dependent on
more than one control variable.

Set Description Language and Contexts
The definition of a context needs a formal language
ad hoc. To this purpose we designed the Set
Description Language (SDL) [Ard01].
We implemented the SDL in Prolog [Plg97,Amz]
also keeping the logic structure of this language.
In SDL complex contexts’ structures are declared by
using a vocabulary of only four keywords: context,
controls, views, contains.

This feature is undoubtedly an advantage to the
programmer using this language for the first time.
We now show an example of code written in a
slightly modified version of SDL:

context ContextName(ParametersList) :=

controls := ControlsList,
views := ViewsList,
contains context
ContainedContext(Lp_con
t_context):

(Conditions_on_variables).

The programmer must create and place the widgets,
i.e. the various components of the graphical interface,
among which menus, buttons, images, and even
windows.

where,
• ContextName is the name of the context that

is to be generated;
• ParametersList is the list of parameters of

the context; such parameters are passed to
the context at the moment of the its
generation;

• ControlsList is the list of the control
elements of the context;

• ViewsList is the list of the view elements of
the context;

• ContainedContext is the name of the context
container inside the context ContextName;

• Lp_cont_context is the list of the parameters
of the container context ContainedContext;

• Conditions_on_variables is the list of
constraints and conditions to which the
variables listed in ControlsList and
ViewsList are subject.

A control element is a list of two elements: the first
is the variable controlled by the control, the second
is a string used by the user to insert the comment. A
view element has a structure similar to that of a
control.
Not all the terms used in the previous code are
necessary to define a context: in fact, a context can
either contain only controls or only views, and it can
even contain no other context. However, a context
must contain almost a control or a view, and in order
to define the variable managed by this unique
element in the context a formal definition must be
given by means of conditions to which it is subject.
In conclusion, every context has a set of parameters
possibly empty. The SDL language makes thus a
clear division between the interface description and
the data structure: the former is expressed through a
context, the latter inside the definition of the context
is defined using SDL sets or finite domains.

GUI front-end
Graphical interfaces are often built by programmers
resorting to object-oriented API that supplies a

complete set of pre-assembled components for
interfaces.
In the development of our infrastructure, we chose to
use the GTK+ 2.0 API [Gtk].
Written entirely in C, GTK has been implemented
with in mind the ideas of classes and callback
functions.
Using GTK functions, it is possible to define wholly
the graphical layout and the functionalities of a
graphical interface.

Model specification in SDL
In this work we present a simple medical image
viewer as an example of the proposed system. This
application gives the user the opportunity of inserting
a free string (the image file name), to choose it
among a limited set of strings (image labels) and/or
to specify numeric values.
It is possible to draw an ideal parallel between the
concept of context and a graphical interface.
In fact, a context, expressing relationships between
variables, corresponds to a graphical user interface,
that allows the user to interact with the elements of
the context itself.
Following this idea we implemented a SDL engine
that analyses the specification of a context expressed
in SDL language and generates a corresponding
graphical user interface.
The SDL engine uses two specific kinds of widgets,
among those offered by GTK: menus and text-
entries. It also makes an analysis of the type of the
data dealt in the context. It chooses to use a menu to
allow the user to select in a group of possible
candidates, when the variable dealt by the widget is
alphanumeric; through a text-entry, on the contrary,
the SDL engine allows the user to insert directly the
numeric value that he wants to give as input. In case
the variable to be managed is numeric it chooses a
text-entry widget.
The value introduced by the user are often subject to
constraints and conditions limiting the choice of the
user by forcing him to insert no values violating the
conditions. Therefore, another function of the SDL
engine is to enrich widgets with the ability of
rejecting erroneous values.
In this framework menus and text-entries perform the
role of controllers, according to what has been
initially defined in the chosen paradigm.
The SDL engine, for this specific task, uses the GTK
widget image, that corresponds to the view of our
paradigm. Under every element of the graphical
interface there is a label, another kind of widget of
GTK. The label has not a functional role; no callback
function has to be linked to it. It is used as a sort of

help which would explain to the final user the
purpose of the element of the interface to which it is
linked.

Figure 2

Structure of the layout
The arrangement of widgets inside the interface is
established according to a defined criterion. Controls
and views are linked between them; they are, in fact,
grouped in a context. The arrangement of widgets
inside the interface highlights the connection
between the widgets of the same context, placing
them next to each other. If a context is contained in
another one then its graphical implementation is
inside the one corresponding to the containing
context. Every context implementation has a graphic
layout similar to a newspaper page. Widgets are
arranged in columns and placed one next to the other.
The first widgets inserted are controls, the second are
views. It is evident, in this way, the direct
dependency of views on controls.
In order to decide the arrangement of the widgets
inside the columns, the application associates a
weight to every widget roughly proportional to its
height. A menu and a text-entry have a weight equal
to 1 and an image has a weight equal to 4. The
weight of every column is the sum of the weights of
the widgets that it contains. The stacking of the
widgets must produce stacks with heights almost
equal. The goal is to obtain an almost rectangular
shaped context. The search of this configuration is
not very heavy, thanks to the fact that generally the
number of widgets inside a context implementation is
relatively low. While determining the layout of a
context all the contained ones are treated as single
widgets. This makes possible to perform a complete
search to find out the best configuration. At the
beginning all the possible configurations of the
widgets of the context are generated.
The configurations whose columns have a weight
smaller than 3 are discarded.

Then the standard deviation of weights of the
columns for each configuration is computed, and the
configuration with the lowest standard deviation is
chosen. An example layout for an application in the
medical diagnosis support domain is shown in Fig.2.

3. CONCLUSIONS AND FUTURE
WORK
The presented paradigm offers several benefits to the
designers and programmers of interfaces. The SDL
engine provides undeniable utilization simplicity.
The programmer has only to describe the contexts,
using a very simple language consisting of only four
words without delving into the large number of the
underlying API instructions.
The second benefit offered by the SDL engine is that
the arrangement of the widgets inside the interface,
i.e. the graphical layout, is totally delegated to the
computer. The SDL engine takes also care of this
task while only the task of defining the semantic of
the variables dealt by the interface, providing a
definition of the variables and of the links between
them, has been left to the programmer.
As future work, we plan to extend the presented
paradigm including user models. This would
hopefully foster the development of more
customizable and effective interaction modalities.
Other research directions include the improvement of
usability and design criteria for the choice of widgets
and the definition of the graphical interface layout.

REFERENCES
[Ard02] Ardizzone, E., Peri, D., and Pirrone, R.: User

Interfaces for SDL Applications, KES2002 Knowledge-
Based Information Engineering System & Allied
Technologies, Podere di Ombriano, 2002.

[Ard01] Ardizzone, E., Peri, D., Pirrone, R., Palma, A.,
Peri, G.: A Knowledge based Approch to Intelligent
Data Analysis of Medical Images, IDAMAP 2001,
London, September 4th.

[Plg97] Console, L., Lamma, E., Mello, P. and Milano, M.:
Programmazione Logica e Prolog, UTET
UNIVERSITA' (1997).

[Amz] Building Expert System in Prolog,
http://www.amzi.com.

[DixHCI] Dix, A. J., Finlay, J. E., Abowd, G. D. and Beale,
R.: Human-Computer Interaction, Prentice Hall.

[Gtk] The Gimp Toolkit, http://www.gtk.org.
[Kra88] Krasner G. E. and Pope S. T.: A cookbook for

using the model view controller user interface
paradigm in Smalltalk-80, Journal of Object-Oriented
Programming, No. 1(3), pp. 26-49, 1988.

	Keywords
	Set Description Language and Contexts
	GUI front-end

