
Conceptual models for Describing Virtual Worlds

F. Bernier†, E. Boivin‡, D. Laurendeau‡, M. Mokhtari†, F. Lemieux†

† Distributed Synthetic Environment Group
Defence R&D Canada – Valcartier
Val-Bélair, Qc, Canada, G3J 1X5

{francois.bernier, marielle.mokhtari,
francois.lemieux}@drdc-rddc.gc.ca

‡ Computer Vision and Systems Laboratory
Dept of Electrical and Computer Engineering
Laval Univ. Canada, G1K 7P4, Québec, Qc

{eboivin, laurend}@gel.ulaval.ca

ABSTRACT
A conceptual model of a virtual world is a high-level representation of how the objects behave and how they are
related to each other. The conceptual models identify the most essential elements of the reality to be simulated. This
is the first and a very important step in the process of designing a virtual world. Afterwards, specific and complex
models can be implemented and inserted into these conceptual models. This paper provides an overview of existing
conceptual models used to design virtual worlds. A number of existing frameworks and architecture for describing
virtual worlds are classified into six kinds of conceptual models: unstructured, graphic-oriented, network-oriented,
object-oriented, environment-oriented and relational graph-oriented representations. The advantages and issues
regarding virtual world design, management, reusability and interoperability are discussed.

Keywords
Virtual World, Conceptual Model, Reusability, Modularity, Extensibility

1. INTRODUCTION
Creating a virtual world (VW) implies choosing among
many alternative design approaches. One of these decisions
is the structure or the kind of conceptual model on which
the VW will be built. A conceptual model is a high-level
representation of how objects behave and how they are
related to each other. The kind of conceptual model can
have an impact on the reusability, extensibility and
modularity of a VW. These characteristics are important in
VW for the same reason as in software domain: increase in
flexibility, decrease in cost and time, etc. This paper
presents categories of conceptual models VW and shows
the effect of these categories on above-mentioned
characteristics.

This paper is organized following the classification of the
conceptual models underlying many commercials and
academics VWs. A few examples of existing VWs are
given for each kind of conceptual model. Finally, the issues
and advantages of each kind of conceptual models in
regard of the creation, the management, the reusability,
extensibility and modularity of VW are presented.

2. Conceptual Models
Most VWs use ad hoc conceptual models while others

rely on more structured and rigorous approaches. This
section will present the most common kind of conceptual
models used to develop VWs.

2.1 Unstructured conceptual models
Many existing VWs do not use any specific type of

conceptual model and rather adopt an unstructured ad hoc
model. This approach is successful when the VW is
dedicated to a simple application and when it is developed
by a small design team, but the design and implementation
of complex applications becomes rapidly unmanageable.

Referential
Relationship

World

Entity Entity

Figure 1 Unstructured representation
of a virtual world.

As illustrated in Figure 1, when using an unstructured
conceptual model, the entities populating the VW share the
same virtual “space” and the task of defining their
behaviour and the VW structure is left to the designers of
the application. This kind of conceptual model allow the
designer to optimized the VW for the current application.
However, VWs based on this kind of conceptual model
will be hardly extendable. For instance, the rules for
routing the events to the entities or the calling sequences
are tailored for the application with little opportunity left
for reuse.

2.2 Graphic-oriented conceptual models
The scene-graph approach is a widely used modelling

paradigm in virtual reality (see Figure 2). Even though
scene-graphs have been mainly developed for building
graphics representations of the reality, they are also used to
create and animate VWs. The animation task is achieved by
adding behaviours to the entities populating the VW
which, in this case, consists of the scene-graph itself.
Instances of the scene-graph paradigm are found in
[VRML97], [OpenInventor], [Viskit], [WTK] and many
other graphics rendering toolkits. In a scene-graph, each
entity populating the VW corresponds to a node in the
graph. A relationship between a node (entity) and other

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS Proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

nodes can only be achieved by referencing the nodes (e.g.
by establishing a “referential relationship” in the scene-
graph).

World

Entity Entity

Referential
Relationship

EntityEntity

Referential & Composition
Relationship

Figure 2 Scene-graph representation

of a virtual world.

A simple instance of a scene-graph is the four wheels
belonging to an automobile. Each wheel corresponds to a
node in the graph. The “wheel” nodes are linked to the “car
body” node by referential relationships. The relative
position and orientation of the entities are stored in special
nodes.

The main problem with the scene-graph paradigm is
that, although it is well suited for describing the spatial
relationships between entities, or more specifically, the
graphics appearance of entities populating the VW, it fails
in modelling non-graphical behaviours. Consequently, the
VW can only manage the visual coherence of its
constituents. In the scene-graph conceptual model, the
behaviours of the entities are implemented using overriding
or callback mechanisms. The interactions between the
entities are managed by an event routing mechanism. The
entities publish events related to their behaviour to a event-
management service in the VW and this event-management
service routes these events to the entities that have
subscribed to this service. This approach is highly flexible.
However, even if the service is able to transmit a wide
range of events that are relevant to an entity, it cannot
manage and guarantee the coherence of this entity and the
interoperability between the entities participating in an
interaction. This task is left to the design team and it is a
serious limiting factor for VWs of medium to high
complexity in which a high level of reusability,
extensibility and modularity is required. For instance, a
virtual pen and its cap are represented by two different
scene-graphs models and integrated, at run time, into to the
same VW. The following behaviours shall be expected
from their interactions:

1. The cap shall hide the tip of the pen;
2. The cap and the pen shall hold together due to

friction.
A VW based on scene-graphs (which was the

paradigm used for designing the cap and the pen) can only
support the first behaviour since it is relevant to the
appearance of the pen. Even if the second behaviour can be
implemented in one of the two scene graphs with an ad hoc
physics-based external model for friction, it cannot
recognize (physically) the entities in the second graph. This
hybrid design approach (scene-graph and unstructured)
succeeds for monolithic VWs with a small number of
physics-based behaviours but fails for dynamic VWs with a
large number of complex behaviours.

The graphical approach is an entity-centric modelling
approach, since entities are more important than the
interactions between them. Like for many kinds of

conceptual models, problems may appear when many
different types of symmetrical interactions exist between
entities. For instance, object Earth attracts all the “owned”
entities according to the universal law of attraction.
However, this law is bi-directional, thus every ”owned”
entity should attract object Earth in turn. Collision deals
with the same type of problem since collision is an
interactive phenomenon depending on all participating
entities. The reuse of these symmetrical behaviours only is
not possible since it implies the reuse of many entities.

2.3 Network-oriented conceptual models
Several VWs are distributed over a computer network.

In order to optimize network communication between
virtual entities, Networked Virtual Environments (NVE)
[Singhal99] or Distributed Virtual Environment (DVE)
[Singhal99] like Spline [Open Community] and NetEffect
[Das97] improve the previous scene-graph conceptual
model by refining it with the concept of “locale”.

World

Local

Referential & Composition
Relationship

Entity

Topological Inclusion

Local

Entity

EntityEntity

Referential & Composition
Relationship

Figure 3 Network-oriented representation

of a virtual world.

This modelling paradigm allows the entities to be
managed in well-defined 3D volumes. For instance, an
avatar in the VW can see only the entities sharing the same
room. Open Community [Open Community] and Massive3
[Greenhalgh00] improve this concept of “locale” by
allowing hierarchical entities in the different locales
composing the VW.

The approach facilitates the optimization of network
communication by limiting the interactions of an entity to
other entities in the same locale. However, the network-
oriented approach cannot manage interoperability and
maintain coherence of the VW. Like for the two previous
approaches, the user must use an ad hoc representation of
the reality. The resulting reusability, extensibility and other
interesting features are then limited because the VW itself
cannot manage new added components or reuse existing
one into another context. Like for the graphic-oriented
conceptual model, this entity centric apporach limits the
reuse of behaviours alone.

2.4 Object-oriented conceptual model
The object-oriented (OO) software design approach is

often used as a kind of conceptual model. In the design of
VWs, the Object-Oriented Physical Modelling approach
([OOPM] [Fishwick96]) is an example of this paradigm. It
proposes a way of integrating geometry and dynamics of
entities.

Figure 4 shows the structure of a simple model built
using the object-oriented approach.

Class

Class Class

0..n

Class

Aggregation

Association

Inheritance

Figure 4 Object-oriented (OO) representation

for a virtual world.

The OO approach can improve the reusability,
extensibility and modularity of a VW. A VW using this
kind of conceptual model can define a set of generic
classes. The VW knows how these classes interact together.
The VW can be extended with any entity inheriting from
one or many pre-defined base classes. For instance, a cap
of pen inherits form a Visible and Collisionable class.
When the cap will hit a pen (another visible and
collisionable object), the VW will be able to manage
friction and visual occlusion between these two entities.
Another advantage of OO programming is that a class does
not necessarily represents an entity. For example, a class
could implement a collision detection behaviour. This
behaviour could then be reused without any entity.

However, this paradigm contains many pitfalls that
prevent to achieve efficient modelling of highly dynamic
virtual worlds. These issues a caused by inadequate
aggregation, intrinsic limitation of inheritance and
continuous refactoring of inheritance tree (fragile base
class problem [Mikhajlov98]). For instance, aggregation in
most OO languages cannot be specified. “The car is in the
garage”, “the garage is made of wood” and “the garage has
a door” are all examples of aggregation. The meaning of
the aggregation is different in these three examples. If this
meaning were kept, it would help to manage coherency in a
VW. However, it is lost in C++ or Java languages. The
impossibility to reuse child classes is another limitation of
OO approach. The inheritance approach is based on the
concept of programming by difference [Johnson88] where
a child class specializes its parent class. However, this
specialization can rarely be reused. For instance, in a VW
containing a class of entities Chair and a class of entities
Table, a chair with wheels is to be created. For this
purpose, the VW designer can extend the Chair class by
creating a WheelChair class. If a table with wheels has to
be created, a natural approach would be to reuse the wheels
in the WheelChair class. However, because of the intrinsic
nature of inheritance, class WheelChair cannot be used
outside the context of Chair. The only possible way to
create a table with wheels is to cut and paste the code of
the class WheelChair into a new class WheelTable, which
is a subclass of Table and to adapt the code for the “wheel”
property to the Table context. If the wheels were
aggregated into the class of entities Chair, it would be
easier to aggregate them into another class. A conceptual
model blocking inheritance and allowing aggregation only
could solve these problems.

2.5 Environment-oriented
This modelling approach places entities into

environments (see Figure 5). As for all other modelling
approaches, the environmental approach allows attributes
and behaviour to be defined for and assigned to an entity.

Contrary to the locale approach, the environment approach
is more general than the simple topological inclusion
relationship. The environmental inclusion relationship
allows defining a common set of environmental attributes
and behaviours to be defined for all entities belonging to a
given environment. For instance, entities being part of the
“Earth” environment will be subjected to Earth’s gravity
while entities located on Mars will obey to Mars’ gravity
law.

Environmental
Inclusion

Environment

Entity Entity
Figure 5 Hierarchical environment-oriented

representation of a virtual world.

The environmental inclusion approach can also be
extended to hierarchical entities (see Figure 6). In this case,
an entity can act as an environment for another entity.

Environmental
Inclusion

Environment

Entity
Environment

Entity
Environment

Entity
Environment

Entity
Environment

Environmental
Inclusion

Figure 6 Environment-oriented representation

of a virtual world.

The environmental inclusion approach is used at
various levels in DEVA3 [Pettifer00], NPSNET
[Macedonia94], Bamboo [Watsen98] and VEOS
[Bricken93]. For instance, DEVA3 supports different
behaviour assignment approaches: a behaviour can be
specific to a single entity, to a group of entities, or can be
shared by all entities belonging to an environment.

The environmental inclusion relationship (like most
others previously mentioned kinds of relationships) is not
sufficient to describe complex VWs. If more relationships
were defined and recognized, it would be possible, for
instance, to apply a dynamic chain solver when two or
more links were connected together.

2.6 Relational graph-oriented
Relational graphs are a general modelling approach.

In a relational graph, every entity in the VW is linked to
the other entities ovia one or more relationships. Figure 7
shows a simple diagram of this modelling approach. When
entities can be typed (e.g. classes of entities can be
defined), the relational graph is a generalization of the
previously described OOM approach.

Entity Entity

Entity
x y

z

Figure 7 Relational graph-oriented representation of a

virtual world.

URBI & ORBI [Fabre00], BrickNet [Singh95] and
Daubrenet et al [Daubrenet00] are based on this approach.
The first one, URBI & ORBI, defines a set of entity types
but does not impose relationships. Relationships such as

“is composed of”, “is adjacent to”, or “activates” can be
defined dynamically. BrickNet uses semantic relationships
to link entities together. Depending of the configuration of
the VW worlds, some behaviour can be enabled. For
instance, as soon as both legs are attached to a robot, it can
start to walk. This kind of behaviour can make easier the
extensibility of the VW since the robot legs can be the
result of an extension.

However, the global task of managing these
relationships is not always or clearly defined as performed
by the VW manager. Instead, this task is often divided into
individual tasks to be managed by each involved entity.
Consequently, the use of such a flexible modelling
technique cannot guarantee the required characteristics.

3. CONCLUSION
The kind of conceptual model influences the level of

reusability, extensibility and modularity of a VW.
Unstructured (or ad hoc) conceptual models rely on the
user to guarantee these characteristics. If the project is and
remains small sized, it may be the most appropriate
approach. For projects that are likely to be extended and
constructed by modules, the development of a VW trying
to improve these characteristics is essential. The
appropriate kind of conceptual mode must be chosen
carefully. If the object-oriented approach is selected, the
level of reusability and other characteristics will be limited
to the predefined set of classes. The relational graphs are
really flexible but their generality makes them difficult to
be understood by the framework (see cable example). If a
VW cannot recognize a new relationship, it will not be able
to manage its effect on existing entities of the VW.
Standard integration rules (standard language) would help
to define the interaction and the integration rules of entities
populating a VW. Before a new entity is added, its
integration rules would be defined.

Based on the lessons learned from existing kinds of
conceptual models, many other approaches could be
proposed. For instance, the APIA [Bernier00] proposes a
kind of conceptual model with an integration language
solving some of the problems encountered with the object-
oriented and relational graph oriented VWs. This approach
remains to be validated by real applications.

4. REFERENCES
[Bernier00] F. Bernier, D. Poussart, D. Laurendeau and M.

Simoneau-Drolet. Interaction-Centric Modelling for
Interactive Virtual Worlds: the APIA Approach. In
Proceedings of ICPR 2002. Quebec, Canada. 2002.

[Bricken93] W. Bricken and G. Coco. The VEOS Project.
Technical Report, Human Interface Technology
Laboratory, University of Washington. 1993.

[Dahnmann99] J. Dahmann et al. HLA and Beyond:
Interoperability Challenges. In Simulation
Interoperability Workshop. Orlando, FL: IEEE. 1999.

[Daubrenet00] S. Daubrenet, S. Pettifer and A. West.
Relationships: providing structure and behaviour for
shared virtual environments. In Proceedings of 7th
UKVRSIG Conference, pages 117-126. University of
Strathclyde, Strathclye, Scotland. 2000

[Das97] T.K. Das, G. Singh, A. Mitchell, P.S Kumar, and
K. McGee. NetEffect: A network architecture for large-
scale multi-user virtual worlds. In proceedings de la

conference ACM Symposium on Virtual Reality
Software and Technology (VRST 1997). pages 157-
163. Lausanne, Suisse. 1997.

[Fabre00] Y. Fabre, G. Pitel, L. Soubrevilla, E. Marchand,
T. Géraud and A. Demaille. A Framework to
Dynamically Manage Distributed Virtual
Environments. In Proceedings of the Second
International Conference on Virtual Worlds, pages 54-
64. Springer-Verlag. 2000

[Fishwick95] P. A. Fishwick. Simulation Model Design
and Execution: Building Digital Worlds. Pearson
Education POD, Prentice Hall, 1995.

[Fishwick96] P. A. Fishwick. Extending Object-Oriented
Design for Physical Modeling. Submission for special
issues of ACM Transactions on Modeling and
Computer Simulation.

[Johnson88] A. Johnson, M. Roussos, J. Leigh, C. Barnes,
C. Vasilakis and T. Moher. The NICE Project:
Learning Together in a Virtual World. In Proceedings
of VRAIS '98, pages 176-183. Atlanta, Georgia. 1998.

[Greenhalgh00] C.M. Greenhalgh, J. Purbrick, and D.
Snowdown. Inside MASSIVE-3: Flexible support for
data consistency and world structuring. In Proceedings
of the conference Collaborative Virtual Environments
2000, pages 119-127. San Francisco, CA. 2000.

[Macedonia94] M. R. Macedonia, M. J. Zyda, D. R. Pratt,
P. T. Barham and S. Zeswitz. NPSNET: A Network
Software Architecture for Large Scale Virtual
Environments, Presence, 3(4). 265–287. 1994.

[Mikhajlov98] L. Mikhajlov and E. Sekerinski. A Study of
The Fragile Base Class Problem. In Proceedings of the
12th European Conference on Object-Oriented
Programming, pages 355-382. Brussels, Belgium.
1998.

[OpenInvenor] Open inventor – SGI http://www.sgi.com
/software/inventor/

[OOPM] OOPM - Object-Oriented Physical Modeling -
University of Florida,
http://www.cis.ufl.edu/~fishwick/tr/tr96-026.html

[Pettifer00] S. Pettifer, J. Cook, J. Marsh and A. West.
DEVA3: Architecture for a Large-Scale Distributed
Virtual Reality System, In Proceedings of ACM
Conference on Virtual Reality Software and
Technology (VRST'00), pages 33-40. Seoul, Korea.
2000.

 [Singh95] G. Singh, L. Serra, W. Png, A. Wong, and H.
Ng. BrickNet: sharing object behaviors on the Net. In
Proceedings IEEE VRAIS ‘95, pages 19-27. 1995.

[Singhal99] S. Singhal and M. Zyda. Networked Virtual
Environments - Design and Implementation. Addison
Wesley. 1999.

[Viskit] VisKit - Paradigm Entertainment,
http://www.viskit.com
[Vrml97] VRML 97 - Web3D

http://www.web3d.org/Specifications/VRML97/
[Watsen98] K. Watsen and M. Zyda. Bamboo - A Portable

System for Dynamically Extensible, Realtime,
Networked, Virtual Environments. In Proceedings of
the Virtual Reality Annual International Symposium
(VRAIS'98), pages 139-146. Atlanta, GA. 1998.

[WTK] WorldToolkit - Sense8,
http://www.sense8.com/products/wtk.h

