
Creating virtual worlds using adapting XML

Vlastimil Miléř
Postgraduate Student

Czech Technical University
Karlovo náměstí 13

 121 35, Praha 2, Czech Republic

xmiler@fel.cvut.cz

Bohuslav Hudec
Associate Professor

Czech Technical University
Karlovo náměstí 13

121 35, Praha 2, Czech Republic

hudec@cslab.felk.cvut.cz

ABSTRACT
This paper deals with two aspects of virtual world creation – consistency of data and isolation of independent
concepts. These concepts include among others 3D graphics rendering, physical simulation, audio processing, or
user interaction. Current systems for virtual world creation focus more on concrete concepts and less on their
independence thus limiting extensibility. They usually define static core functionality that quickly becomes
outdated due to the fast development in computer industry. Adapting XML on the other hand focuses on
extensibility, defining rules for cooperation (data sharing) and providing mechanisms for concept isolation. This
makes it suitable as the base layer for extensible virtual world languages.

Keywords
Virtual World, XML, 3D Graphics, Data Adaptation

1. MOTIVATION AND
INTRODUCTION
Building a working virtual world is hard. It is so hard,
because there is a large amount of concepts in the
virtual world, which must be synchronized and
cooperate.
It is a trivial task to model a tree today. A bit harder
is to simulate its growth. New entities are required –
sun light, substrate, water and nutrients, gravity or
wind to name a few. This problem has potential
exponential characteristics. Each new element may
influence the existing ones. Therefore adding it into a
virtual world may as a consequence cause
invalidation of current data structures and algorithms.
Our goal is to minimize this unpleasant property. One
of the possibilities to reduce the exponential
characteristics of the interactions in virtual world is to
reuse data and algorithms. Once the algorithms for
rendering, occlusions, collision detection, and event
routing or physical simulation are developed, they
must be applicable on as much real world data as

possible without compromises. Each algorithm
should work with most suitable data.
In this paper, we describe a data storage mechanism
that mimics the properties of the real world and that:

• Keeps the data and concepts as much
isolated as possible and thus lowers the
exponential growth in complexity.

• Allows sharing of selected chunks of data to
prevent duplication and inconsistency.

2. ADAPTING XML
Adapting XML is based on best features of current
technologies for virtual world description
(XML+DTD [1], XML Schema [4], VRML-97 [5],
X3D [6], MPEG-7 [7]). These features are:

• Transparent structure.
• Selection of most important concepts.

While it tries to eliminate the problematic ones:
• Missing references support in parser.
• Missing custom atomic types.
• Poor isolation of concepts.
• Monolithic architecture.

To accomplish this, we employ following techniques:
• References are processed in parser. Their

existence is transparent for client code.
• Type-libraries – a type-library is a module

cooperating with the parser providing means

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

for storing, parsing, serialization and
validation of atomic types. No atomic types
are defined by the parser – there are only
custom atomic types in type-libraries.

• Adapting engine – adapting engine is a layer
above the parser that extracts the relevant
bits of data from the whole file and creates a
“writable view” on the data.

Architecture of adapting XML
The adapting XML inserts a new layer between XML
parser and the application. The new layer is called
adapting engine and its task is to adapt the data in the
XML file using converters (Fig. 2-1).

The typed and adapted DOM is similar to the XML
DOM [1] interface. But instead of using simple
elements, the elements implement two interfaces – a
common interface and a type-specific interface.

Using the common interface, the element can be
serialized or de-serialized from a string
representation in the XML file. Also, the element can
be uniquely identified using this interface.

The type-specific interface provides access to the
internal data For example, if an atomic type
represents a triangle mesh, it can have methods for
manipulation and rendering of the mesh. Figure 2-2
shows the role of adapting engine in an application.
Each part of an application receives suitable data
through the typed and adapted DOM. This separation
is a way to achieve one of our primary goals – the
separation of concepts and minimization of
dependencies.

The components in the application can cooperate at
different levels [10]. Among others, they may use the

file in the file system and serialize access to it or they
may use the typed and adapted DOM.

3. TYPES AND ELEMENTS IN
ADAPTING XML

Atomic types
XML defines one atomic type – a string (CDATA).
For some applications, this may be not suitable. They
require multiple atomic types optimized for different
tasks. These applications would usually encode these
types into a string. But each application that uses this
type must provide the validation code on its own. It
would be desirable to prevent the code duplication by
moving it into a shared type library. This type library
is then used by the adapting engine. The library
needs to be written in a full featured programming
language that is able to interoperate with the adapting
engine.
The adapting engine instantiates the type from the
library and uses it to parse and validate the string. An
application interfacing with Adapting engine using
the Typed and adapted DOM and would see this type
instead of the generic XML element.
By allowing custom atomic types and defining the
way of connecting them to the parser and adapting
engine, the mechanism for concept separation was
given a solid foundation. Application may parse,
serialize and validate files while not explicitly
understanding the semantics and syntax of their
contents.

Structured types
The ability to define transparent structured types is
paramount for flexible virtual world description.

Fig. 2-1 Adapting engine in the system.

Application

Fig. 2-2 Adapting engine separates concepts
and promotes componentized architecture

instead of monolithic architecture.

XML-formatted data file

XML
parser/serialization

Adapting engine

Application

XML DOM

Typed and
adapted DOM

3D
 re

nd
er

in
g

So
un

d
pl

ay
er

Ph
ys

ic
al

 si
m

.

A
pp

 sp
ec

ifi
c

Parser and adapting
engine

Data file

XML Schema definition of structured data types is
sufficient for our needs.
In the examples in the rest of this article, XML
Schema syntax will not be used due to limited space.
The structured types will be represented graphically
as on figure 3-1.

4. CONVERTERS
The problem of data adaptation may have different
complexness. Sometimes it is enough to ignore
portion of the data, rename data fields or fill missing
fields with default values. Alternatively, the
conversion may be very complex.
A converter is an object cooperating with the
adapting engine. Its declaration specifies a source
type and a destination type. When given an element
of source type, it creates another element of
destination type. The created element is a “view” on
the source element through destination type. If it
makes sense for given pair of types, the changes
made to the created element should be reflected in the
original one.
Adapting XML defines two types of converters –
scripted and native converters. They differ in
implementation. Native converters are declared in
XML file and implemented in type library. Scripted
converters are completely defined in the XML file.

5. VIRTUAL WORLD CONCEPTS IN
ADAPTING XML
This chapter describes the so far verified concepts
and enumerates the alternatives how each concept
may be implemented if constraints are different.

3D Graphics
Figure 5-1 shows types in a commonly used
hierarchical 3D scene composed of Segments. This
definition was used for testing of adapting XML.
The described scene definition was used due to its
simplicity and similarity with already existing
definitions. It uses only discrete atomic types (int,
float) and does not make use of advanced features of
adapting XML.
Since 3D graphics data are usually large in volume
and it would be ineffective to have object for each
floating point number of each vertex, an atomic type
for vertex can be defined in a type library. With the
recent movement to pixel shaders and opaque vertex
data [8], this will suit most applications.

In each application, there must be a module able to
interpret the semantics of the Segment. The definition
of types, the type library and the interpreting module
form logical system component. It makes sense to
distribute them together as a package. Support of
similar functionality is one of the X3D goals.

Grip Points
It is virtually impossible to create 3D graphics and
other complex data used in virtual worlds without the

Fig. 5-1 Structure of a simple hierarchical scene.
The arrows mark dependencies between types.

VERTICES

V:VERTEX*

TRIANGLE

INDEX1:int
INDEX2:int
INDEX3:int

TRIANGLES

T:TRINAGLE*

GEOMETRY

V:VERTICES
T: TRIANGLES

TRANSFORMATION

_:float[16]

MATERIAL

R:float
G:float
B:float
A:float

SEGMENT

CH:SEGMENT*
T:TRANSFORMATION
G:GEOMETRY
M: MATERIAL

Hierarchy of
segments

VERTEX

X:float
Y:float
Z:float

Fig 3-1 Definition of structured types
VERTEX, VERTICES and TRIANGLE.

VERTICES

V:VERTEX*

TRIANGLE

V:VERTEX[3]

Structured type name

Child name

Child type

Any number
of instances

Constant
number of
instances

use of suitable tools. Grip points [9] is a simple
method for editation of data transformable to points
in 3D space (typically vertices positions or normals).
Types GripPoint and GripPoints (vector of
GripPoints) were defined. An accompanying library
was able to draw them as 3D points and user was able
to move them in 3D space.

Example
Cooperation of isolated concepts using scripted
converters was tested on a simple example. A user
type – Box – was defined. It consisted of 6 floating
point numbers named X1, Y1, Z1, X2, Y2, Z2. These
represented the two points in 3D space, where the
box was positioned (fig. 5-2).
Two scripted converters were defined:

• Box to Geometry – this converter maps a
Box node to a Geometry node. The
geometry node contains 12 triangles and 8
vertices. The child nodes in Vertices
reference the children of Box.

• Box to GripPoints – the Box node is
converted to a GripPoints node containing
two GripPoint nodes (X1, Y1, Z1) and (X2,
Y2, Z2).

This example, however simple, demonstrated that
features of adapting XML fulfill our primary goals.
The two concepts (Segment, GripPoints) were
independent and the user defined Box type made use
of them.

6. SUMMARY AND CONCLUSION
In this paper, the basic principles of adapting XML
were described – architecture, definition of atomic
and structured types and features of converters. Then
it was demonstrated, how some of virtual world
concepts could be implemented in adapting XML.
The adapting XML simplifies the creation of virtual
worlds in by isolating concepts and thus allowing to
postpone decision making. At its current stage it is
not meant to replace X3D or MPEG-7 as they are
more specific and suitable for today’s industry. The
virtual world creation is still a very immature
discipline and many virtual world implementations
contain few distinct concepts and sometimes the data
in the file are misused for inadequate tasks (for
example using graphics data for collision detection).
As the number of concepts in virtual world rises, the
advantages of adapting XML become more visible. In
the future, set of independent libraries will be
implemented (for 3D rendering, collision detection,
user interaction, physical simulation, sound
processing). The creation of virtual world will be
simplified to selecting appropriate libraries,
implementing own concepts and connecting them
using scripted converters. Adapting XML tries to
follow a famous quote of Albert Einstein: “Make
everything as simple as possible, but not simpler”.

7. REFERENCES
[1] Bray T., Paoli J., Sperberg-McQueen C.M., Maler

E. (editors): XML+DTD specification
http://www.w3.org/TR/REC-xml

[2] Clark J. (editor): XSLT specification
http://www.w3.org/TR/xslt

[3] Clark J., DeRose S. (editors): XPath specification
http://www.w3.org/TR/xpath

[4] XML Schema specification
http://www.w3.org/XML/Schema

[5] VRML97 specification (ISO/IEC 14772-1:1997)
http://www.web3d.org/technicalinfo/specification
s/vrml97/index.html

[6] X3D specification
http://www.web3d.org/x3d.html

[7] MPEG-7 specification (ISO/IEC 15938-x:200x)
[8] OpenGL architecture review board: OpenGL

Extension Registry http://oss.sgi.com/projects/ogl-
sample/registry/

[9] Frey D.: AutoCAD 2000, Sybex 1999, ISBN 07-
821249-8-4

[10] Miler V., Hudec B.: Communication in
Componentized System with 3D Graphics and
Multimedia, WSCG 2003 – Posters, ISBN 80-
903100-2-8

[11] Gamma E., Helm R. Johnson R., Vlissides J: Design
Patterns, Addison-Wesley Pub. Co. 1995, ISBN 02-
016336-1-2

Figure 3-2 User defined type Box is rendered as
Geometry and edited as GripShapes
(independent concepts cooperate).

Box in its raw form
consists of 6 floating

point numbers.

Box as Geometry
(12 triangles)

Box as 2
GripPoints

Rendered Segment
(data adaptation is
transparent to app).

