KOMPONENTY PRO E-KURZ TECHNIKA POČÍTAČŮ
Bakalářská práce

Tomáš Hostovský
B1001 Přírodovědná studia, obor Informatika se zaměřením na vzdělávání

Vedoucí práce: Ing. Petr Michalík, Ph.D.

Plzeň, 2013
Prohlašuji, že jsem diplomovou práci vypracoval samostatně
s použitím uvedené literatury a zdrojů informací.

Plzeň, 22. březen 2013

…………………………………………

vlastnoruční podpis
OBSAH
1 ÚVOD .. 1
2 ANIMACE ... 2
 2.1 NORMY ANIMACE .. 2
 2.2 TYPY ANIMACE ... 2
 2.2.1 Kreslená animace .. 2
 2.2.2 Plošková animace ... 3
 2.2.3 Stop motion .. 3
 2.2.4 Rotoskopie ... 3
 2.2.5 Počítačová animace .. 4
 2.2.6 Kombinovaná animace ... 4
3 PROGRAM ADOBE FLASH ... 5
 3.1 PROSTŘEDÍ PROGRAMU ... 5
4 VYBRANÁ ZAPOJENÍ PRO ANIMACE ... 7
 4.1 PŘÍMÝ PŘÍSTUP DO PAMĚTI (DMA) ... 7
 4.2 PŘERUŠENÍ SE SÉRIOVÝM PŘIÉLOVÁNÍM .. 7
 4.3 PROGRAMOVÁ IDENTIFIKACE PŘERUŠENÍ 7
 4.4 PODMÍNĚNÝ (ASYCHRONNÍ) PŘENOS DAT S OBOUSMĚRNOU KORESPONDENCÍ .. 8
 4.5 PODMÍNĚNÝ (ASYCHRONNÍ) PŘENOS DAT S JEDNOSMĚRNOU KORESPONDENCÍ .. 8
 4.6 NEPODMÍNĚNÝ (SCHRONNÍ) PŘENOS DAT ... 8
 4.7 ODDĚLENÝ ADRESOVÝ PROSTOR ... 8
 4.8 SPOLEČNÝ ADRESOVÝ PROSTOR .. 9
 4.9 PRINCI SERIOVÉ SČÍTAČKY ... 9
5 POSTUP PŘI VYTVÁŘENÍ ANIMACÍ V PROGRAMU ADOBE FLASH 11
 5.1 ÚPRAVA PŮVODNÍCH SCHEMAT V PROGRAMU MALOVÁNÍ 11
 5.2 ZÁKLADNÍ NASTAVENÍ NOVÉHO PROJEKTU V PROGRAMU FLASH 11
 5.3 TVORBA ANIMACÍ V PROGRAMU FLASH ... 12
 5.3.1 Import obrázků ... 12
 5.3.2 Vytváření pohyblivých komponent animace 12
 5.3.3 Tvorba názvů animací .. 13
 5.3.4 Vytváření ovládacích prvků animace ... 13
 5.3.5 Programování komponent v jazyce ActionScript 13
 5.3.6 Práce s vrstvami ... 14
 5.3.7 Export animace .. 15
6 TVORBA TESTŮ PRO PŘEDMĚT TECHNIKA POČÍTAČŮ 1 16
 6.1 ZADÁNÍ TESTOVÝCH OTÁZEK .. 16
 6.1.1 Test číslo jedna ... 16
 6.1.2 Test číslo dvě ... 20
 6.1.3 Test číslo tři ... 24
 6.2 SPRÁVNÉ ODPOVĚDI NA TESTOVÉ OTÁZKY .. 27
 6.2.1 Test číslo jedna ... 27
 6.2.2 Test číslo dvě ... 28
 6.2.3 Test číslo tři ... 29
7 TVORBA CVIČENÍ ... 31
 7.1 ZADÁNÍ CVIČENÍ 1 ... 31
 7.2 NÁVRH ŘEŠENÍ CVIČENÍ 1 ... 31
 7.3 ZADÁNÍ CVIČENÍ 2 ... 32
7.4 NÁVRH ŘEŠENÍ CVIČENÍ 2 .. 33
7.5 ZADÁNÍ CVIČENÍ 3 .. 38
7.6 NÁVRH ŘEŠENÍ CVIČENÍ 3 .. 39
8 ZÁVĚR.. 40
9 SEZNAM OBRÁZKŮ ... 41
10 SEZNAM LITERATURY .. 42
11 RESUMÉ .. 44
12 PŘÍLOHY .. 44
1 ÚVOD

Bakalářská práce nazvaná „Komponenty pro e-kurz Technika počítačů 1“ se zabývá vytvářením animací jednotlivých částí počítačových systémů v grafickém vektorovém programu pro tvorbu animací, prezentací a her Adobe Flash. Animace jsou dnes velmi užitečným pomocníkem ve výuce. Proto bylo dobrým nápadem přetvořit původní statické schémata elektronických obvodů z předmětu „Technika počítačů 1“ do pohyblivých animací, které mohou lépe zobrazit a pomocí studentům tohoto předmětu pochopit principy činnosti těchto klopných obvodů. Díky animacím si mohou studenti lépe představit fungování a komunikaci jednotlivých komponent v počítačových obvodech. Cílem této práce je vytvořit animace, které by sloužily pro zlepšení výuky předmětu Technika počítačů 1.

Ideálním nástrojem na vytvoření animací byl program Adobe Flash CS5. Tento grafický program disponuje kromě pokročilých animačních nástrojů má také implementovaný programovací jazyk ActionScript, díky němu lze programovat určité části animace.
2 Animace

Slovo animace pochází z latinského slova anima (v českém překladu význam tohoto slova znamená duše, oživení). (1)

Animace je přetváření statického obrazu tak, aby pro pozorovatele vytvořil dojem pohybu. Tato iluze je způsobena lidským vnímáním. Setrvačnost lidského zraku způsobuje, že oko má uschovený obraz i několik milisekund po tom, co se již na sítnici přestal promítat. Proto tedy mnoho rychle po sobě promítaných snímků vytváří dojem pohybu. Tohoto efektu obdobně využívá kromě animace také film sestavený z několika po sobě jdoucích vyfotografovaných snímků. (2)

2.1 Normy animace

2.2 Typy animace

Existuje velké množství různých technik vytváření animace. Animace můžeme vytvářet ve dvou nebo ve třech rozměrech, tedy 2D nebo 3D.

2.2.1 Kreslená animace

Kreslená animace je typ animace, kde se musí každý snímek celý namalovat jako obraz na papír nebo jiný materiál. (6)
Mezi známé filmy vytvořené touto technikou z dílny studia Walt Disney patří Sněhurka a sedm trpaslíků (r. 1937), Lví král (r. 1994) a Popelka (r. 1950). (7)

2.2.2 PLOŠKOVÁ ANIMACE

Plošková animace patří mezi nejstarší animační techniku. Princip animace spočívá v skládání jednotlivých snímků z předem předpřipravených dvourozměrných materiálů, například obrázků vyrobených z různých barev a typů papírů, nebo jiných tvarů vystříhaných z textilních látek či jiných materiálů. (8)

Tuto technikou animace je na motivy knihy Čarodějův učeň Otfrieda Preusslera vytvořen stejnojmenný snímek Karla Zemana Čarodějův učeň (r. 1977). (8)

2.2.3 STOP MOTION

Stop motion je technika animace, při níž se ručně nastavuje poloha třírozměrného objektu mezi jednotlivými snímkky. Animujeme připravené loutky, které mohou být vyrobené z plastelíny nebo jiných materiálů. Tyto loutky mají v sobě mnoho ohebných drátů, které slouží k nastavení pózy loutky. Na stativu je připevněn fotoaparát a při změně určité části loutky a popřípadě při změně dalších komponent scény se upravená scéna vyfotografove. Vyfotografovaná scéna slouží jako snímek v budoucí vytvořené animaci. Takto se postupuje i u dalších snímků, aby se po spojení jednotlivých fotografií vytvořila kompaktní animace. Tato metoda animování má velmi velkou časovou náročnost. (9)

Tímto druhem animace jsou vytvořeny např. filmy na motivy knihy Jana Wericha Fimfárum (r. 2002) a Fimfárum 2 (r. 2006). Tuto technikou je také vytvořen seriál Ovečka Shaun (r. 2007) nebo také celovečerní snímek Wallace a Gromit: Prokletí Králíkodlaka (r. 2005) animovaný se touto technikou vytvářel celých pět let. (10)

2.2.4 ROTOSKOPIE

Rotoskopie je animační technika, kde musí animátor překreslovat filmové okénka natočené kamерou, které obsahují nahranou reálnou scénu.
2 Animace

Také je tato animační technika velmi časově náročná. Tuto technikou jsou animovány celovečerní filmy jako Alois Nebel (r. 2011), Valčík s Bašírem (r. 2008) a další. (11)

2.2.5 Počítačová animace

Počítačovou animaci můžeme používat stejně jako kreslenou animaci, jen s tím rozdílem, že nekreslíme obraz tužkou nebo jinými výtvarnými prostředky na papír, ale digitálně na obrazovku počítače pomocí grafičkého tabletu.

Další využití počítačové animace spočívá v použití grafických programů jako jsou Adobe Flash, profesionální 2D animační programy od společnosti Toon Boom Animation a další programy, které využívají nejčastěji vektorovou grafiku a mnoho pokročilých softwarových nástrojů jako jsou kosti, klíčové snímky a mnoho dalších.

Softwarem od společnosti Toon Boom Animation byly animovány např. film Simpsonovi ve filmu (r. 2007), seriál Městečko South Park (r. 1997) nebo film Bambi 2 (r. 2006), Princezna a žabák (r. 2009) a jiné další filmy ze studia Walta Disneye. (12)

Také existují 3D animační programy jako například Autodesk Maya, Autodesk 3D Max Studio, Cinema 4D a další, které pracují s virtuálním počítačovým 3D světem, ve kterém se vytvořené 3D objekty animují a výsledná scéna se vyrenderuje, tedy počítač vypočítá výsledné snímky scény.

Prvním 3D animovaným celovečerním filmem byl z dílny studia Pixar Toy Story: Příběh hraček (r. 1995). Prvním českým 3D animovaným celovečerním filmem od Jana Tománka se stal Kozí příběh - Pověsti staré Prahy (r. 2008). (13)(14)

2.2.6 Kombinovaná animace

Zde jsou spojeny různé typy animací v různých jednotlivých scénách. (6)
3 PROGRAM ADOBE FLASH

Program Adobe Flash CS5 je grafický vektorový program pro efektivní tvorbu animací, her, webových prezentací nebo webových stránek. Výhodou programu Adobe Flash je vlastní implementovaný programovací jazyk ActionScript.

Tento program vytvořila firma Macromedia, která byla několik let poté odkoupena společností Adobe.

Obrázek 1 - prostředí programu Adobe Flash

3.1 PROSTŘEDÍ PROGRAMU

Prostředí programu Adobe Flash CS5 se skládá z hlavního okna, kde se zobrazuje animace, časové osy na které vidíme počet snímků zobrazení určitého prvku v animaci. Také v prostředí najdeme panel nástrojů a okno s různým nastavením animace a také okno s hlášením o kompilaci programu napsaného v programovacím jazyku ActionScript.

V tomto programu pracujeme s vektorovou grafikou. Bitmapovou grafiku lze do tohoto programu importovat a částečně s ní také pracovat. Díky vektorové grafice mají námi vytvořené flashové animace malou velikost na disku. Nevýhoda však spočívá v tom, že mají velké výpočetní nároky na procesor počítače, na kterém animace běží.
Vektorová grafika vytvořené objekty počítá jako matematicky znázorněné křivky, kdežto bitmapová grafika vytvořené objekty ukládá do matice pixelů, kde má každý pixel vlastní hodnotu červené, zelené a modré od 0 do 255. Největší výhodou vektorové grafiky spočívá v tom, že ji na rozdíl od bitmapové grafiky můžeme libovolně zvětšovat, aniž by obraz ztratil kvalitu. Další výhoda spočívá v menší výsledné velikosti na disku.

Ve Flashi pracujeme se zdrojovým souborem ve formátu fla, kde jsou uložena všechna nastavení programu a zdrojové kódy v programovacím jazyce ActionScript. Námi vytvořenou výslednou animaci můžeme vyexportovat do výsledného výstupního souboru swf.

Obrázek 2 - prostředí programovacího jazyka ActionScript
4 VYBRANÁ ZAPOJENÍ PRO ANIMACE

Ze skript po dohodě s vedoucím mé práce jsem vybral těchto devět zapojení, která jsem animoval v grafickém programu Adobe Flash CS5.

4.1 PŘÍMÝ PŘÍSTUP DO PAMĚTI (DMA)

Připojené zařízení vyšle žádost o přímý přístup do paměti aktivací signálu DRQ. Řadič DMA žádost vyhodnotí a vyšle požadavek na uvedení procesoru do stavu HOLD. Procesor potvrdí uvedení do stavu HOLD signálem HLDA. Řadič poté aktivuje signál DACK, že byla žádost ze strany procesoru akceptována. Řadič DMA aktivuje signál WR non a CS non, kterými informuje paměť o zápisu bloku dat. Paměť přijala data z připojeného zařízení.

4.2 PŘERUŠENÍ SE SÉRIOVÝM PŘIDĚLOVÁNÍM

Připojené zařízení 2 aktivuje žádost o přerušení signálem INT. Procesor je informován o požadavku na přerušení signálem INT. Procesor poté potvrdí žádost signálem INTA, který žádající připojené zařízení (v tomto případě PZ) nepropustí dále. Vzdálenější připojené zařízení žádající o přerušení čeká do doby, než se k němu dostane signál INTA. Po přijmutí signálu INTA vyšle připojené zařízení na datovou sběrnici svoji identifikaci (tzv. vektor přerušení). Priorita žádajících zařízení je dána vzdáleností od procesoru, čím blíže procesoru, tím vyšší priorita.

4.3 PROGRAMOVÁ IDENTIFIKACE PŘERUŠENÍ

Procesor je informován o požadavku na přerušení. Na přerušení signálem INT připojené zařízení 2 aktivuje příslušný bit vstupní brány, čímž je umožněna identifikace přerušení procesorem. Podle polohy logické 1 ve vstupní bráně zjistí procesor, které připojené zařízení žádá o přerušení a aktivuje se příslušná přerušovací procedura.
4.4 Podmíněný (asynchronní) přenos dat s obojstrannou korespondencí

Procesor čte data z připojeného zařízení. Připojené zařízení připraví data na datové sběrnici a aktivuje signál STB non, který uloží data do vyrovnávacího registru a nastaví horní klopný obvod, který informuje procesor o přenosu dat. Procesor přijme data signálem RD non a zároveň vynuluje klopný obvod a tím informuje připojené zařízení o přečtení dat procesorem. Procesor zapisuje data na připojené zařízení. Procesor připraví data na datové sběrnici a aktivuje signál WR non, kterým se data uloží do vyrovnávacího registru a nastaví se dolní klopný obvod, který informuje o přenosu dat. Připojené zařízení přijme data a aktivuje signál ACK non, který vynuluje dolní klopný obvod a informuje o ukončení přenosu dat.

4.5 Podmíněný (asynchronní) přenos dat s jednoustrannou korespondencí

Procesor čte data z připojeného zařízení. Připojené zařízení připraví data na datové sběrnici a aktivuje signál STB non, který nastaví horní klopný obvod a tím informuje procesor o přenosu dat. Procesor přečte data signálem RD non a vynuluje horní klopný obvod. Procesor zapisuje data na připojené zařízení. Procesor připraví data na datové sběrnici a aktivuje signál WR non, který informuje připojené zařízení o přenosu dat a nastaví dolní klopný obvod, který informuje procesor o přenosu dat. Připojené zařízení přijme data a aktivuje signál ACK non, který vynuluje dolní klopný obvod.

4.6 Nepodmíněný (synchronní) přenos dat

4.7 Oddělený adresový prostor

Procesor čte data z hlavní paměti. Procesor aktivuje signál M non, který znamená, že bude procesor pracovat s hlavní pamětí. Procesor také aktivuje signál R, který
známé, že bude procesor číst data. Na adresovou sběrnici se nastaví adresa. Provede se čtení dat.

4.8 SPOLEČNÝ ADRESOVÝ PROSTOR

4.9 PRINCIP SÉRIOVÉ SČÍTAČKY

Elektronický přepínač je v poloze 1. Do posuvných registrů A, B se postupně připraví dvě čtyřbitová datová slova. Přepínač se přepne do polohy 2, aby se mohl provádět součet. Vyšle se první hodinový signál do posuvných registrů a klopného obvodu typu D, registry zareagují posláním nejnižších bitů a0, b0 do sčítačky, klopný obvod typu D je v této chvíli prázdny. V úplné paralelní sčítačce se sečtou nejnižší bity a0, b0. Jejich součet se uloží do posuvného registru A. Přenos do vyššího řádu se uloží do klopného obvodu typu D. Vyšle se druhý hodinový signál do posuvných registrů a klopného obvodu typu D, registry zareagují posláním bitů a1, b1 do sčítačky, klopný obvod typu D pošle uložený přenos do vyššího řádu do sčítačky. V úplné paralelní sčítačce se vše sečte a nový přenos do vyššího řádu se pošle do klopného obvodu typu D a celkový součet se uloží do registru A. Vyšle se třetí hodinový signál do posuvných registrů a klopného obvodu typu D, registry zareagují posláním bitů a2, b2 do sčítačky, klopný obvod typu D pošle uložený přenos do vyššího řádu do sčítačky. V úplné paralelní sčítačce se vše sečte a nový přenos do vyššího řádu se pošle do klopného obvodu typu D a celkový součet se uloží do registru A. Vyšle se čtvrtý hodinový signál do posuvných registrů a klopného obvodu typu D, registry zareagují posláním bitů a3, b3 do sčítačky, klopný obvod typu D pošle uložený přenos do vyššího řádu do sčítačky. V úplné paralelní sčítačce se vše sečte a nový přenos
do vyššího řádu se pošle do klopného obvodu typu D a celkový součet se uloží do registru A. Výsledný součet se nyní nachází v posuvném registru A.
5 POSTUP PŘI VYTVÁŘENÍ ANIMACÍ V PROGRAMU ADOBE FLASH

Při tvorbě animací pro elektronický kurz určený pro předmět „Technika počítačů 1“ jsem se nesetkal s žádným zásadním problémem, který by mohl nějak ohrozit vytvoření animace pro jakékoliv z vybraných blokových schémat, které jsem animoval. Nejvíce informací jsem získal z publikace, která je od společnosti Adobe, která je určena jako hlavní manuál k programu Adobe Flash CS5. (17)

5.1 ÚPRAVA PŮVODNÍCH SCHÉMAT V PROGRAMU MALOVÁNÍ

Od mého vedoucího práce jsem dostal obrázky zapojení elektronických obvodů, které se používají ve výuce v předmětu Technika počítačů 1. Tato schémata byly bitmapové obrázky ve formátu PNG. U těchto obrázků jsem si vytvořil několik kopii a dále jsem je upravoval v programu malování. V tomto programu jsem u původního zdrojového obrázku přebarvil některé vodiče na červenou barvu. Červená barva označuje vodiče, které mají být aktivní. Protože v elektronických obvodech jsou různé vodiče aktivní v různém čase, musel jsem takto upravit několik původních obrázků, tak jak jsou aktivní ve skutečném elektronickém obvodu. Také jsem ještě provedl barevné rozlišení komponent, které se v těchto schématech nacházejí. Například pro procesor jsem zvolil zelenou barvu, pro připojené zařízení modrou barvu nebo pro vyrovnávací registr žlutou barvu. Takto upravené obrázky jsem poté mohl importovat do programu Adobe Flash CS5 a dále s nimi v tomto programu pracovat.

5.2 ZÁKLADNÍ NASTAVENÍ NOVÉHO PROJEKTU V PROGRAMU FLASH

Po spuštění programu Adobe Flash CS5 jsem vytvořil nový projekt a z nabídky jsem zvolil starší verzi programovacího jazyka - ActionScript 2. Počet snímků za sekundu jsem nastavil na hodnotu 12 FPS (frame per second - z angličtiny snímek za sekundu), tedy poloviční hodnotu snímků než u filmu v kině. Tato hodnota je však postačující pro účely animovaných blokových schémat elektronických obvodů.
5.3 TVORBA ANIMACÍ V PROGRAMU FLASHE

5.3.1 IMPORT OBRÁZKŮ

Pro import skupiny obrázků do Adobe Flash jsem použil příkaz import to library, který uložil obrázky do knihovny projektu. Poté jsem přesouval podle posloupnosti budoucí animace obrázky na scénu do vlastní vrstvy a nastavil jsem jim na časové ose určitý počet snímku, po který se budou zobrazovat ve výsledné animaci. Takto jsem postupoval u všech importovaných obrázků.

Obrázek 3 - knihovna objektů v programu Adobe Flash

5.3.2 VYTVÁŘENÍ POHYBLIVÝCH KOMPONENT ANIMACE

V programu Flash jsem si vytvořil objekt typu Movie Clip, který měl představovat data pohybující se po datové sběrnici. Ten se uložil do knihovny objektů, ze které jsem ho umístil do samostatné vrstvy a nastavil mu na požadovaných snímcích počáteční a koncovou polohu na scéně. Na snímky mezi koncovou a počáteční polohou jsem použil příkaz Classic tween, který dopočítal polohu snímků mezi počátečním a koncovým bodem
tak, aby vytvořily dojem plynulého pohybu z místa polohy počátečního bodu do místa polohy koncového bodu.

5.3.3 TVORBA NÁZVŮ ANIMACÍ

Na názvy animace jsem použil nástroj text a tento text jsem umístil také do vlastní samostatné vrstvy.

5.3.4 VYTVAŘENÍ OVLÁDACích PRVKŮ ANIMACE

Pro ovládání animace uživatelem jsem v programu Flash vytvořil objekty typu Button, které slouží jako tlačítka. Tato tlačítka slouží v animaci pro spouštění, zastavování, ale také ke statickému krokování vpřed i vzad.

Objekt typu Button v sobě obsahuje 4 snímky, které se aktivují podle interakce kurzoru myši uživatele, který sleduje animaci. Snímek UP se zobrazuje, když se nad tlačítkem nenachází kurzor uživatele. Snímek OVER se zobrazuje, když najede uživatel kurzorem na tlačítko. Snímek DOWN se zobrazuje, když najede uživatel kurzorem na tlačítko a stiskne myš. Snímek HIT vymezuje aktivní oblasti tlačítka, která budou reagovat na kurzor myši. Na všech snímcích kromě snímku HIT jsem vytvořil různá barevná provedení tlačítka. (15)

Obrázek 4 - snímky objektu typu Button

5.3.5 PROGRAMOVÁNÍ KOMPONENT V JAZYCE ACTIONSCRIPT

Na začátku animace jsem v prvním snímku scény použil příkaz stop(), který zastaví animaci na snímku číslo jedna. Tento příkaz je naprogramovaný v jazyce ActionScript.

Na tlačítko Spusť animaci, které se nachází na prvním snímku animace, jsem použil příkazy on(release){gotoAndPlay(2);} , kde on(release) je příkaz po stisknutí tlačítka a příkaz gotoAndPlay(2) znamená, že se má animace přesunout na snímek číslo 2 a začít se od tohoto snímku přehrávat.
Od snímku číslo dvě se zobrazí na animaci místo tlačítko Spusť animaci nové tlačítko Zastav, které je opatřeno naprogramovaným kódem `on(release){gotoAndPlay(1);}`, který se podobně jako u tlačítka Spusť animaci vykoná po stisknutí tlačítka a přesune animaci na první snímek, avšak protože máme ve scéně na snímku číslo jedna příkaz `stop()`, tak se naše animace nezačne přehrávat, ale zůstane po celou dobu na snímku číslo jedna, dokud uživatel opět nestiskne tlačítko Spusť animaci, které opět aktivuje příkaz pro přehrávání animace od snímku číslo dvě.

Kdybychom v průběhu přehrávání nikdy nestisknuli tlačítko Zastav, tak se bude animace přehrávat až do úplného posledního snímku animace, kde se nachází příkaz `gotoAndPlay(1)`, který vykoná ten samý příkaz, který se vykoná stisknutím tlačítka Zastav, tedy vrátí animaci na snímek číslo jedna.

Dále se na všech snímcích animace nachází dvojice tlačítek sloužících ke krokování animace. Tyto dvě tlačítka mají příkazy `on(release){gotoAndStop(požadovaný snímek);}`. Po stisknutí tlačítka se přesuneme na požadovaný snímek, který bude zastavený, aby si mohl uživatel prohlédnout po neomezený čas aktuální dění v obvodu a přečíst si doprovodný komentář. Pro tlačítko s šipkou dozadu znamená posunutí na předešlý vybraný snímek, který obsahuje důležité informace, které si mohou studenti bez časového omezení prohlédnout. Pro tlačítko s šipkou dopředu platí, že se posuneme na následující snímek s důležitými informacemi.

5.3.6 Práce s vrstvami

5.3.7 **Export animace**

Když je animace hotová nebo když se chceme podívat na aktuální funkčnost rozpracované animace, tlačítky Ctrl a Enter exportujeme animaci do formátu Swf.
Protože v každém předmětu vyučovaném na vysoké škole je potřeba na konci nebo během semestru určit předběžné znalosti studentů tohoto předmětu. Mezi nejlepší a nejjednodušší metody pro získání informace o znalostech studentů patří písemné testové otázky. Pro naše testy jsem zvolil otázky, kde vybírá student jednu správnou odpověď ze tří nabízených možností. Vždy je pouze správná jedna odpověď. V každém tomto testu se vykytuje vždy třináct otázek. Testy budou sloužit jako podklad tvorby budoucího elektronického kurzu.

Zadáním a správnými odpovědmi na testové otázky jsem se inspiroval hlavně ze skript předmětu Technika počítačů 1. (16)

6.1 ZADÁNÍ TESTOVÝCH OTÁZEK

6.1.1 TEST ČÍSLO JEDNA

1. Z nabízených možností vyberte správný popis stavu čekání (WAIT).
 a) Mikroprocesor vkládá do strojního cyklu čekací takty a testuje signál TEST nebo READY. Jestliže je signál aktivní, poté může procesor pokračovat v provádění strojního cyklu.
 b) Kvůli ochraně proti chybové činnosti je zastavena činnost procesoru.
 c) Datové a adresové vývody mikroprocesoru jsou uvedeny do stavu vysoké impedance a tím je procesor odpojen od společné datové a adresové sběrnice.

2. Z nabízených možností vyberte správný popis principu činnosti algoritmu LRU.
 a) Vyřazuje z vyrovnávací paměti blok dat, který se nacházel ve vyrovnávací paměti nedéle.
 b) Vyřazuje z vyrovnávací paměti blok dat, který procesor nejdéle nepoužíval.
 c) Vyřazuje z vyrovnávací paměti blok dat pomocí generátoru pseudonáhodných čísel.
3. Z nabízených možností vyberte správné vysvětlení pojmu datový konflikt typu WAR.
 a) Instrukce I1 přečte operand A, který byl v předchozím kroku modifikován instrukcí I2.
 b) Instrukce I1 se zapíše do paměťového místa operandu A později než jej instrukce I2 přečte.
 c) Instrukce I1 a I2 přepisují operand A, avšak instrukce I2 tak učiní dříve než I1.

4. Z nabízených možností vyberte správný popis požadavkového režimu DMA.
 a) Data velikosti několika kilobajtů jsou přenášena po blocích. Sběrnici lze pravidelně uvolňovat pro kanály, které mají vyšší prioritu.
 b) Procesor se nachází ve stavu HOLD a jeho sběrnice jsou ve stavu vysoké impedance. Systémovou sběrnici blokuje řadič DMA. Lze přenos pozastavovat signálem DRQ pro vyšší prioritu. Přenos dat se ukončí doběžnou hranou signálu HOLD.
 c) Procesor se nachází ve stavu HOLD a jeho sběrnice jsou ve stavu vysoké impedance. Systémovou sběrnici blokuje řadič DMA. Přenos dat se ukončí doběžnou hranou signálu HOLD.

5. Definujte pojem procesor.
 a) Takové zařízení, které je univerzální a nikdy se nespecializuje na určitou činnost.
 b) Takové zařízení, které podle programu uloženého v paměti zpracovává data.
 c) Základní jednotka počítače, která představuje sekvenční logický automat pro zpracování informací.

6. Jak nazýváme specializovaný mikroprocesor spolupracující s univerzálním mikroprocesorem?
a) Specializovaný mikroprocesor spolupracující s univerzálním mikroprocesorem se nazývá monolitický mikroprocesor.

b) Specializovaný mikroprocesor spolupracující s univerzálním mikroprocesorem se nazývá nanoprocessor.

c) Specializovaný mikroprocesor spolupracující s univerzálním mikroprocesorem se nazývá koprocesor.

7. Kolik bitů obsahuje bajt (slabika)?

 a) Bajt obsahuje 2 bity.
 b) Bajt obsahuje 8 bitů.
 c) Bajt obsahuje 4 bity.

8. Definujte pojem adresa a vysvětlete rozdíl mezi zdrojovou (source) a cílovou (destination) adresou.

 a) Adresa je identifikátor označující úplné a přesné místo, kde se nachází příjemce nebo výdejce datového slova. Cílová adresa je místo, kde mikroprocesor odebírá data při provádění instrukcí. Zdrojová adresa je místo, kam mikroprocesor ukládá data při provádění instrukcí.
 b) Adresa je identifikátor označující úplné a přesné místo, kde se nachází příjemce nebo výdejce datového slova. Zdrojová adresa je místo, kde mikroprocesor ukládá data při provádění instrukcí. Cílová adresa je místo, kam mikroprocesor odebírá data při provádění instrukcí.
 c) Adresa je identifikátor označující úplné a přesné místo, kde se nachází příjemce nebo výdejce datového slova. Zdrojová adresa je místo, kde mikroprocesor odebírá data při provádění instrukcí. Cílová adresa je místo, kam mikroprocesor ukládá data při provádění instrukcí.

9. Vysvětlete rozdíl mezi dvojúrovňovým a tříúrovňovým paměťovým systémem.

 a) Dvojúrovňový paměťový systém obsahuje jednu vnitřní (hlavní) a žádnou vnější (sekundární) paměť. Tříúrovňový paměťový systém obsahuje oproti
dvoúrovňovému paměťovému systému navíc vnější paměť, která se nachází za procesorem a hlavní pamětí.

b) Dvoúrovňový paměťový systém obsahuje jednu vnitřní (hlavní) a jednu vnější (sekundární) paměť. Tříúrovňový paměťový systém obsahuje oproti dvouúrovňovému paměťovému systému navíc vyrovnávací paměť, která se nachází mezi procesorem a hlavní pamětí.

c) Dvoúrovňový paměťový systém obsahuje jednu vnitřní (hlavní) a jednu vnější (sekundární) paměť. Tříúrovňový paměťový systém obsahuje oproti dvouúrovňovému paměťovému systému navíc vnější paměť, která se nachází za procesorem a hlavní pamětí.

10. Jaký význam v elektronickém obvodu má Aritmeticko-logická jednotka?

a) Provádí dekódované instrukce.

b) Slouží k provádění téměř všech aritmetických a logických operací. Ve střádačích se postupně přičítají (akumulují, střádají) operandy.

c) Při nepřímém adresování ukládá dočasně data a mezivýsledky.

11. Vysvětlete pojem vyrovnávací paměť.

a) Vyrovnávací paměť je velmi rychlá, bohužel ale velmi malá paměť, která díky své rychlosti slouží pro ukládání dat, které v danou chvíli využívá procesor.

b) Vyrovnávací paměť je středně rychlá, bohužel ale velmi veliká paměť, která díky své velikosti slouží pro ukládání dat, které v danou chvíli využívá procesor.

c) Vyrovnávací paměť je velmi rychlá, která má dostatečnou velikost paměti, díky které slouží pro ukládání a archivaci uživatelských dat.

12. Popište princip činnosti přímého zápisu.

a) Provádí zápis do hlavní paměti až po uvolnění bloku dat z vyrovnávací paměti.

b) Provádí současný zápis do hlavní a vyrovnávací paměti.
c) Provádí zápis do hlavní paměti zřetezeně, totéž platí i při čtení z paměti.

13. Vysvětlete pojem maskované a nemaskované přerušení podprogramu.

a) Maskovaná přerušení jsou taková, že je nelze zakázat, oproti tomu přerušení, která lze zakázat označujeme jako nemaskovaná.

b) Maskovaná přerušení jsou taková, že je lze zakázat, oproti tomu přerušení, která nelze zakázat označujeme jako nemaskovaná.

c) U maskovatelných přerušení lze nastavit prioritu přerušení. Oproti tomu u nemaskovaného přerušení nelze nastavit prioritu přerušení.

6.1.2 TEST ČÍSLO Dvě

1. Z nabízených možností vyberte správný popis stavu HOLD.

 a) Mikroprocesor vkládá do strojního cyklu čekací takty a testuje signál TEST nebo READY. Jestliže je signál aktivní, poté může procesor pokračovat v provádění strojního cyklu.

 b) Kvůli ochraně proti chybové činnosti je zastavena činnost procesoru.

 c) Datové a adresové vývody mikroprocesoru jsou uvedeny do stavu vysoké impedance a tím je procesor odpojen od společné datové a adresové sběrnice.

2. Z nabízených možností vyberte správný popis principu činnosti algoritmu FIFO.

 a) Vyřazuje z vyrovnávací paměti blok dat, který se nacházel ve vyrovnávací paměti nedále.

 b) Vyřazuje z vyrovnávací paměti blok dat, který procesor nejdéle nepoužíval.

 c) Vyřazuje z vyrovnávací paměti blok dat pomocí generátoru pseudonáhodných čísel.

3. Z nabízených možností vyberte správné vysvětlení pojmu datový konflikt typu RAW.
a) Instrukce I1 přečte operand A, který byl v předchozím kroku modifikován instrukcí I2.

b) Instrukce I1 se zapíše do paměťového místa operanu A později než jej instrukce I2 přečte.

c) Instrukce I1 a I2 přepsují operand A, avšak instrukce I2 tak učiní dříve než I1.

4. Z nabízených možností vyberte správný popis přerušovaného (blokového) režimu.

a) Data velikosti několika kilobajtů jsou přenášena po blocích. Sběrnici lze pravidelně uvolňovat pro kanály, které mají vyšší prioritu.

b) Procesor se nachází ve stavu HOLD a jeho sběrnice jsou ve stavu vysoké impedance. Systémovou sběrnici blokuje řadič DMA. Lze přenos pozastavovat signálem DRQ pro vyšší prioritu. Přenos dat se ukončí doběžnou hranou signálu HOLD.

c) Procesor se nachází ve stavu HOLD a jeho sběrnice jsou ve stavu vysoké impedance. Systémovou sběrnici blokuje řadič DMA. Přenos dat se ukončí doběžnou hranou signálu HOLD.

5. Určete název procesoru vyrobeného technologií velké integrace.

a) Procesor vyrobený technologií velké integrace se nazývá monolitický nanoprocesor.

b) Procesor vyrobený technologií velké integrace se nazývá koprocesor.

c) Procesor vyrobený technologií velké integrace se nazývá mikroprocesor.

6. Co obsahuje operační paměť?

a) Operační paměť obsahuje program, kterým je v danou chvíli řízena činnost procesoru.

b) Operační paměť obsahuje data, která se používají pro archivaci.

c) Operační paměť obsahuje data, kterými nelze řídit činnost procesoru.
7. Vysvětlete pojem šířka sběrnice?
 a) Šířka sběrnice je počet bitů, které lze postupně přenášet po sběrnici za jeden strojní cyklus.
 b) Šířka sběrnice je počet bitů, které lze současně přenášet po sběrnici.
 c) Šířka sběrnice je počet bitů, které lze postupně přenášet po sběrnici za jeden instrukční cyklus.

8. Co znamená zkratka MIPS?
 a) Hodnota, která udává počet miliónů instrukcí s pohyblivou řádovou čárkou provedených za jednu sekundu.
 b) Hodnota, která udává počet operací s pohyblivou řádovou čárkou
 c) Hodnota, která udává počet miliónů instrukcí v pevné řádové čárce provedených za jednu sekundu.

9. Vysvětlete pojem explicitní adresování a napište alespoň tři typy explicitního adresování.
 a) Explicitní adresování je takové adresování, které vyžaduje specifikaci adresy v adresní části instrukce. Mezi typy explicitního adresování patří přímý operand, přímá adresace, nepřímá adresace, nepřímá adresace vyššího řádu, registrová adresace, relativní adresace, indexová adresace a adresace pomocí ukazatelů.
 b) Explicitní adresování je takové adresování, které vyžaduje specifikaci adresy v adresní části instrukce. Mezi typy explicitního adresování patří přímý operand, přímá adresace, nepřímá adresace, nepřímá adresace nižšího řádu, řadičová adresace, relativní adresace, indexová adresace a adresace pomocí ukazatelů.
 c) Explicitní adresování je takové adresování, které vyžaduje specifikaci adresy v operačním kódu instrukce. Mezi typy explicitního adresování patří přímý operand, přímá adresace, nepřímá adresace, nepřímá adresace
vyššího řádu, registrová adresace, relativní adresace, indexová adresace a adresace pomocí ukazatelů.

10. Jaký význam v elektronickém obvodu mají obvody akumulátorů (střádače)?
 a) Provádí dekódované instrukce.
 b) Slouží k provádění téměř všech aritmetických a logických operací. Ve střádačích se postupně přižítač (akumulují, střádají) operandy.
 c) Při nepřímém adresování ukládá dočasně data a mezzivýsledky.

11. Vyjmenujte typy vnitřní paměti.
 a) Registry procesoru, zápisníková paměť, vyrovnávací paměť a hlavní paměť.
 b) Stránkovací paměť, sekundární paměť, archivní paměť a optické disky.
 c) Stránkovací paměť, sekundární paměť, vyrovnávací paměť a hlavní paměť.

12. Vyjmenujte základní charakteristiky procesorů CISC.
 a) Lze charakterizovat redukovaný instrukčním souborem, jednoduchým formátem instrukcí, neexistencí instrukčního cyklu, značným počtem registrů a jednoduchou architekturou mikroprocesoru.
 b) Lze charakterizovat značným množstvím instrukcí, složitostí instrukcí a nejrůznější způsoby adresování, existenci instrukčního cyklu skládajícího se ze strojních cyklů.
 c) Lze charakterizovat značným množstvím instrukcí, složitostí instrukcí a nejrůznější způsoby adresování, neexistencí instrukčního cyklu, značným počtem registrů.

13. Popište princip činnosti opožděného zápisu.
 a) Provádí zápis do hlavní paměti až po uvolnění bloku dat z vyrovnávací paměti.
 b) Provádí současný zápis do hlavní a vyrovnávací paměti.
 c) Provádí zápis do hlavní paměti zřetezeně, totéž platí i při čtení z paměti.
6.1.3 Test číslo tři

1) Z nabízených možností vyberte správný popis stavu HALT.
 a) Mikroprocesor vkládá do strojního cyklu čekací takty a testuje signál TEST nebo READY. Jestliže je signál aktivní, poté může procesor pokračovat v provádění strojního cyklu.
 b) Kvůli ochraně proti chybové činnosti je zastavena činnost procesoru.
 c) Datové a adresové vývody mikroprocesoru jsou uvedeny do stavu vysoké impedance a tím je procesor odpojen od společné datové a adresové sběrnice.

2) Z nabízených možností vyberte správný popis principu činnosti algoritmu RAND.
 a) Vyřazuje z vyrovnávací paměti blok dat, který se nacházel ve vyrovnávací paměti nedlouho.
 b) Vyřazuje z vyrovnávací paměti blok dat, který procesor nejdéle nepoužíval.
 c) Vyřazuje z vyrovnávací paměti blok dat pomocí generátoru pseudonáhodných čísel.

3) Z nabízených možností vyberte správné vysvětlení pojmu datový konflikt typu WAW.
 a) Instrukce I1 přečte operand A, který byl v předchozím kroku modifikován instrukcí I2.
 b) Instrukce I1 se zapíše do paměťového místa operandu A později než jej instrukce I2 přečte.
 c) Instrukce I1 a I2 přepisují operand A, avšak instrukce I2 tak učiní dříve než I1.

4) Z nabízených možností vyberte správný popis souvislého DMA režimu.
a) Data velikosti několika kilobajtů jsou přenášena po blocích. Sběrnice lze pravidelně uvolňovat pro kanály, které mají vyšší prioritu.

b) Procesor se nachází ve stavu HOLD a jeho sběrnice jsou ve stavu vysoké impedance. Systémovou sběrnici blokuje řadič DMA. Lze přenos pozastavovat signálem DRQ pro vyšší prioritu. Přenos dat se ukončí doběžnou hranou signálu HOLD.

c) Procesor se nachází ve stavu HOLD a jeho sběrnice jsou ve stavu vysoké impedance. Systémovou sběrnici blokuje řadič DMA. Přenos dat se ukončí doběžnou hranou signálu HOLD.

5) Jak označujeme mikroprocesor, který je integrován do jediného pouzdra?

a) Mikroprocesor, který je integrován do jediného pouzdra nazýváme monolitický mikroprocesor.

b) Mikroprocesor, který je integrován do jediného pouzdra nazýváme monolitický nanoprocesor.

c) Mikroprocesor, který je integrován do jediného pouzdra nazýváme monolitický koprocesor.

6) Definujte svými slovy pojem počítač.

a) Takové zařízení, které je postavené na Architektuře von Neumanna nebo na Moskevské architektuře.

b) Takové zařízení, které podle programu uloženého v paměti zpracovává data.

c) Základní jednotka, která představuje sekvenční logický automat pro zpracování informací.

7) Určete rozdíl mezi strojním a instrukčním cyklem.

a) Strojní cyklus je tvořen z několika instrukčních cyklů, které jsou tvořeny z několika taktů, při nichž dochází k operacím s pamětí nebo s výstupními nebo vstupními obvody.
b) Instrukční cyklus je tvořen z několika taktů, které jsou tvořeny z několika strojních cyklů, při nichž dochází k operacím s pamětí nebo s výstupními nebo vstupními obvody.

c) Instrukční cyklus je tvořen z několika strojních cyklů, které jsou tvořeny z několika taktů, při nichž dochází k operacím s pamětí nebo s výstupními nebo vstupními obvody.

8) Co znamená zkratka FLOPS?

a) Hodnota, která udává počet miliónů instrukcí s pohyblivou řádovou čárkou provedených za jednu sekundu.

b) Hodnota, která udává počet operací s pohyblivou řádovou čárkou

c) Hodnota, která udává počet miliónů instrukcí v pevné řádové čárce provedených za jednu sekundu.

9) Vyjmenujte dva druhy architektury počítačů.

a) Existují dva základní druhy architektury. Architektura von Neumanna a Moskevská architektura.

b) Existují dva základní druhy architektury. Architektura von Neumanna a Harvardská architektura.

c) Existují dva základní druhy architektury. Architektura Turingova a Harvardská architektura.

10) Vyjmenujte typy vnější paměti.

a) Registry procesoru, zápisníková paměť, vyrovnávací paměť a hlavní paměť.

b) Stránkovací paměť, sekundární paměť, archivní paměť a optické disky.

c) Stránkovací paměť, sekundární paměť, vyrovnávací paměť a hlavní paměť.

11) Vyjmenujte základní charakteristiky procesorů RISC.

a) Lze charakterizovat redukovaný instrukčním souborem, jednoduchým formátem instrukcí, neexistencí instrukčního cyklu, značným počtem registrů a jednoduchou architekturou mikroprocesoru.
b) Lze charakterizovat značným množstvím instrukcí, složitostí instrukcí a nejrůznější způsoby adresování, existencí instrukčního cyklu skládajícího se ze strojních cyklů.

c) Lze charakterizovat značným množstvím instrukcí, složitostí instrukcí a nejrůznější způsoby adresování, neexistencí instrukčního cyklu, značným počtem registrů.

12) Vyberte z nabídky popis principu činnosti zřetězeného zápisu.
 a) Provádí zápis do hlavní paměti až po uvolnění bloku dat z vyrovnávací paměti.
 b) Provádí současný zápis do hlavní a vyrovnávací paměti.
 c) Provádí zápis do hlavní paměti zřetězeně, totéž platí i při čtení z paměti.

13) Jaký význam v elektronickém obvodu má zápisníková paměť?
 a) Provádí dekódované instrukce.
 b) Slouží k provádění téměř všech aritmetických a logických operací. Ve strojáčích se postupně přičítají (akumulují, střádají) operandy.
 c) Při nepřímém adresování ukládá dočasně data a mezivýsledky.

6.2 SPRÁVNÉ ODPOVĚDI NA TESTOVÉ OTÁZKY

6.2.1 TEST ČÍSLO JEDNA
1. Mikroprocesor vkládá do strojního cyklu čekací takty a testuje signál TEST nebo READY. Jestliže je signál aktivní, poté může procesor pokračovat v provádění strojního cyklu.
2. Vyřazuje z vyrovnávací paměti blok dat, který se nacházel ve vyrovnávací paměti nedéle.
3. Instrukce I1 se zapíše do paměťového místa operandu A později než jej instrukce I2 přečte.
4. Procesor se nachází ve stavu HOLD a jeho sběrnice jsou ve stavu vysoké impedance. Systémovou sběrnici blokuje řadič DMA. Lze přenos pozastavovat signálem DRQ pro vyšší prioritu. Přenos dat se ukončí doběžnou hranou signálu HOLD.

5. Základní jednotka počítače, která představuje sekvenční logický automat pro zpracování informací.

6. Specializovaný mikroprocesor spolupracující s univerzálním mikroprocesorem se nazývá koprocesor.

7. Bajt obsahuje 8 bitů.

9. Dvouúrovňový paměťový systém obsahuje jednu vnitřní (hlavní) a jednu vnější (sekundární) paměť. Tříúrovňový paměťový systém obsahuje oproti dvouúrovňovému paměťovému systému navíc vyrovnávací paměť, která se nachází mezi procesorem a hlavní pamětí.

11. Vyrovnávací paměť je velmi rychlá, bohužel ale velmi malá paměť, která díky své rychlosti slouží pro ukládání dat, které v danou chvíli využívá procesor.

12. Provádí současný zápis do hlavní a vyrovnávací paměti.

6.2.2 Test číslo dvě

1. Datové a adresové vývody mikroprocesoru jsou uvedeny do stavu vysoké impedance a tím je procesor odpojen od společné datové a adresové sběrnice.

2. Vyřazuje z vyrovnávací paměti blok dat, který procesor nejdéle nepoužíval.
3. Instrukce I1 přečte operand A, který byl v předchozím kroku modifikován instrukcí I2.

4. Data velikosti několika kilobajtů jsou přenášena po blocích. Sběrnici lze pravidelně uvolňovat pro kanály, které mají vyšší prioritu.

5. Procesor vyrobený technologií velké integrace se nazývá mikroprocesor.

6. Operační paměť obsahuje program, kterým je v danou chvíli řízena činnost procesoru.

7. Šířka sběrnice je počet bitů, které lze současně přenášet po sběrnici.

8. Hodnota, která udává počet miliónů instrukcí v pevné řádové čárce provedených za jednu sekundu.

10. Slouží k provádění téměř všech aritmetických a logických operací. Ve střádačích se postupně přičítají (akumulují, střádají) operandy.

11. Registry procesoru, zápisníková paměť, vyrovnávací paměť a hlavní paměť.

12. Lze charakterizovat značným množstvím instrukcí, složitostí instrukcí a nejrůznější způsoby adresování, existencí instrukčního cyklu skládajícího se ze strojních cyklů.

13. Provádí zápis do hlavní paměti až po uvolnění bloku dat z vyrovnávací paměti.

6.2.3 Test číslo tři

1. Kvůli ochraně proti chybové činnosti je zastavena činnost procesoru.

2. Vyřazuje z vyrovnávací paměti blok dat pomocí generátoru pseudonáhodných čísel.

4. Procesor se nachází ve stavu HOLD a jeho sběrnice jsou ve stavu vysoké impedance. Systémovou sběrnici blokuje řadič DMA. Přenos dat se ukončí doběžnou hranou signálu HOLD.

5. Mikroprocesor, který je integrován do jediného pouzdra nazýváme monolitický mikroprocesor.

6. Takové zařízení, které podle programu uloženého v paměti zpracovává data.

7. Instrukční cyklus je tvořen z několika strojních cyklů, které jsou tvořeny z několika taktů, při nichž dochází k operacím s pamětí nebo s výstupními nebo vstupními obvody.

8. Hodnota, která udává počet operací s pohyblivou řádovou čárkou provedených za jednu sekundu.

10. Stránkovací paměť, sekundární paměť, archivní paměť a optické disky.

11. Lze charakterizovat redukovaný instrukčním souborem, jednoduchým formátém instrukcí, neexistencí instrukčního cyklu, značným počtem registrů a jednoduchou architekturou mikroprocesoru.

12. Provádí zápis do hlavní paměti zřetězeně, totéž platí i při čtení z paměti.

13. Při nepřímém adresování ukládá dočasně data a mezivýsledky.
7 TVORBA CVIČENÍ

7.1 ZADÁNÍ CVIČENÍ 1

První část cvičení pro studenty předmětu Technika počítačů 1 se skládá z převodní čísla z dvojkové soustavy do dekadické soustavy nebo naopak z převodní čísla z dekadické soustavy do dvojkové soustavy.

1) Číslo 10011110 z dvojkové soustavy převeďte do dekadické soustavy.

Další část cvičení navazuje na předchozí část. Studenti dostanou zadána dvě čísla. Jedno číslo je zadané v desítkové soustavě, druhé číslo je zadané v dvojkové soustavě. Tato dvě čísla se musí sečíst a výsledek součtu těchto dvou čísel se převede do šestnáctkové soustavy. Toto cvičení lze také různě modifikovat, že zadaná čísla a konečný výsledek jsou zadané v jiných soustavách, místo součtu čísel můžeme též čísla odečítat.

2) Sečtěte číslo 23 zadané v desítkové soustavě s číslem 11100011 zadaným ve dvojkové soustavě a výsledek součtu těchto dvou čísel převeďte do šestnáctkové soustavy.

7.2 NÁVRH ŘEŠENÍ CVIČENÍ 1

1) Víme, že základem dvojkové soustavy je číslo 2. Tedy podle pozice od nejnižšího bitu (vpravo) po nejvyšší bit (vlevo) budeme násobit jednotlivé hodnoty bitů mocninami dvou podle jejich pozice.

\[
\begin{array}{c}
0 \times 2^0 = 0 & 1 \times 2^1 = 2 & 1 \times 2^2 = 4 & 1 \times 2^3 = 8 \\
1 \times 2^4 = 16 & 0 \times 2^5 = 0 & 0 \times 2^6 = 0 & 1 \times 2^7 = 128
\end{array}
\]

Všechny dílčí výsledky sečteme a dostaneme výsledek v desítkové soustavě.

\[0 + 2 + 4 + 8 + 16 + 0 + 0 + 128 = 158\]

Číslo 10011110 v dvojkové soustavě je 158 v desítkové soustavě.

2) Číslo 11100011 převedeme obdobným způsobem do desítkové soustavy jako v prvním cvičení.
Tyto dvě čísla sečteme 227 + 23 = 250

Při převodu z desítkové soustavy do šestnáctkové soustavy budeme dělit naše číslo a jeho zbytek po dělení číslem 16, výsledek dělení a konečný zbytek po dělení nám určí číslo v šestnáctkové soustavě.

250 / 16 = 15 zb.: 10

10 / 16 = 0 zb.: 10 => v šestnáctkové soustavě jsou čísla 10 až 15 nahrazeny A až F, tedy 15 = F a 10 = A

Tedy nás výsledek součtu čísla 23 v desítkové soustavě a čísla 11100011 v dvojkové soustavě bude číslo FA v šestnáctkové soustavě.

7.3 ZADÁNÍ CVIČENÍ 2

Studenti si mají zkusit nakreslit a umět vysvětlit princip činnosti zadaných blokových schémat elektronických obvodů probíraných v předmětu Technika počítačů 1.

1) Nakreslete blokové schéma a popište princip činnosti přímého přístupu do paměti (DMA).

2) Nakreslete blokové schéma a popište princip činnosti nepodmíněného (synchronního) přenosu dat.

3) Nakreslete blokové schéma a popište princip činnosti principu sériové sčítačky.

4) Nakreslete blokové schéma a popište princip činnosti podmíněného (asynchronního) přenosu dat s jednosměrnou korespondencí.

5) Nakreslete blokové schéma a popište princip činnosti odděleného adresového prostoru.
6) Nakreslete blokové schéma a popište princip činnosti podmíněného (asynchronního) přenosu dat s obousměrnou korespondencí.

7.4 NÁVRH ŘEŠENÍ CVIČENÍ 2

1) Periferní zařízení vyšle žádost o přímý přístup do paměti bez účasti procesoru. Řadič DMA tento signál vyhodnotí a vyšle požadavek na uvedení procesoru do stavu HOLD. Procesor dokončí probíhající strojní cyklus a tento požadavek potvrdí signálem HLDA. Řadič signálem DACK potvrdí připojenému zařízení, že jeho žádost byla akceptována. Řadič DMA aktivuje signál CS non a RD nebo signál CS non a WR non, kterými informuje paměť buďto o zápisu dat do připojeného zařízení nebo o čtení dat z připojeného zařízení.

3) Elektronický přepínač se nachází v poloze 1. Do posuvných registrů A, B se postupně připraví dvě čtyřbitová datová slova. Přepínač se přepne do polohy 2, aby se mohl provádět součet. Hodiny vysílají hodinové signály do posuvných registrů a klopného obvodu typu D, registry zareagují postupným posláním všech bitů od nejnižších po nejvyšší do sčítačky, kde se tyto bity sečtou společně s přenosem do vyššího řádu, který do sčítačky poslal klopný obvod typu D. Takto se postupně sečtou všechny bity dvou čtyřbitových datových slov a celkový součet se uloží do registru A. Výsledný součet po sečtení všech bitů se nachází v posuvném registru A.
4) Procesor čte data z připojeného zařízení. Připojené zařízení připraví data na datové sběrnicí a aktivuje signál STB non, který uloží data do vyrovnávacího registru a nastaví horní klopný obvod, který informuje procesor o přenosu dat. Procesor přijme data signálem RD non vynuluje horní klopný obvod a informuje připojené zařízení o přečtení dat procesorem. Procesor zapisuje data na připojené zařízení. Procesor připraví data na datové sběrnicí a aktivuje signál WR non, kterým se data uloží do vyrovnávacího registru a nastaví se dolní klopný obvod, který informuje procesor a připojené zařízení o přenosu dat. Připojené zařízení přijme data a aktivuje signál ACK non, který vynuluje klopný obvod a informuje vyrovnávací registru o ukončení přenosu dat.
5) Procesor čte data z hlavní paměti. Procesor aktivuje signál M non, který znamená, že bude procesor pracovat s hlavní pamětí nebo aktivuje signál IO, který znamená, že bude procesor pracovat s I/O obvody. Procesor také aktivuje signál R, který znamená, že bude procesor číst data nebo aktivuje signál W non, který znamená, že bude procesor zapisovat data. Po adresové sběrnici pošle adresu do hlavní paměti. Poté hlavní paměť nebo obvody I/O pošlou data po datové sběrnici do procesoru, když byl vyslán signál R o čtení dat procesorem nebo procesor pošle data po datové sběrnici do hlavní paměti nebo obvodů I/O, když byl vyslán signál WR non o zápisu dat procesorem.
6) Procesor čte data z připojeného zařízení. Připojené zařízení připraví data na datové sběrnici a aktivuje signál STB non, který uloží data do vyrovnávacího registru a nastaví klopný obvod, který informuje procesor o přenosu dat. Procesor přijme data signálem RD non vynuluje klopný obvod a informuje připojené zařízení o přečtení dat procesorem. Procesor zapisuje data na připojené zařízení. Procesor připraví data na datové sběrnici a aktivuje signál WR non, kterým se data uloží do vyrovnávacího registru a nastaví se dolní klopný obvod, který informuje procesor a připojené zařízení o přenosu dat. Připojené zařízení přijme data a aktivuje signál ACK non, který vynuluje klopný obvod a informuje vyrovnávací registr o ukončení přenosu dat.
7.5 ZADÁNÍ CVIČENÍ 3

V počítačovém programu Multisim musí studenti zapojit sčítačku, kterou lze přepnout i na odčítačku a na vhodně zvolených příkladech ověřit její správnou funkčnost. Studenti k tomuto úkolu mohou používat jakékoliv pomůcky například učebnici, internet a další.
7.6 NÁVRH ŘEŠENÍ CVIČENÍ 3

Obrázek 12 - Animace zapojení binární sčítačky, kterou lze přepnout na odčítačku v programu Multisim nahráná programem Adobe Captivate.
8 ZÁVĚR

Moje bakalářská práce se týkala vytvoření podpůrných komponent pro e-kurz určený pro předmět Technika počítačů 1. Chtěl jsem pomocí vylepšit tento elektronický kurz zkušebními testy, díky kterým by si mohli studenti vyzkoušet vlastní znalosti z nastudovaného učiva. Také jsem vytvořil cvičení, kterými by si mohli studenti lépe proovičit praktické znalosti z vyučovaného předmětu. Nejdůležitějším přínosem ve své práci vidím v přetvoření statických schémat elektronických obvodů do funkčních interaktivních animací, které dovedou daleko lépe popsat a ukázat studentům jak pracují tyto elektronické obvody.

Tato bakalářská práce je rozdělena do šesti kapitol. První kapitola se zabývá teoretickou částí animace. Druhá kapitola se zabývá teoretickou stránkou počítačového programu Adobe Flash, ve kterém jsem vytvářel funkční animace. Třetí kapitola se věnuje popisu elektronických obvodů, které se vyučují v předmětu Technika počítačů 1, a které jsem v programu Adobe Flash animoval. Čtvrtá kapitola je celkový popis tvorby vytváření animací v počítačovém programu Adobe Flash. Předposlední kapitola představuje zadání a správné řešení vytvořených zkušebních testů. Poslední kapitola se věnuje vytvořeným pomocným cvičeníím pro elektronický kurz předmětu Technika počítačů 1.

Myslím si, že se elektronické kurzy začínají velmi prosazovat nejenom na vysokých, středních a základních školách, ale také v dalších vzdělávacích institucích nebo firmách. Díky tomu, že tyto kurzy jsou v elektronické podobě, otevírá se zde obrovské množství přidání další funkčnosti a možnostem mnoha vylepšení. Celkově tedy říci, že elektronické kurzy jsou dnes víc než obyčejným doplňkem výuky a budou se podle mého názoru stále více prosazovat.

Na závěr bych velmi rád poděkoval vedoucímu mé bakalářské práce panu Ing. Petru Michalíkovi za trpělivost, připomínky a cenné rady, které výrazně přispěly ke zlepšení této práce.
9 SEZNAM OBRÁZKŮ

Obrázek 1 - prostředí programu Adobe Flash ... 5
Obrázek 2 - prostředí programovacího jazyka ActionScript ... 6
Obrázek 3 - knihovna objektů v programu Adobe Flash .. 12
Obrázek 4 - snímky objektu typu Button ... 13
Obrázek 5 - časová osa s vrstvami .. 15
Obrázek 6 - Schéma přímého přístupu do paměti (DMA) ... 33
Obrázek 7 - Schéma nepodmíněného (synchronního) přenosu dat 34
Obrázek 8 - Schéma principu sériové sčítačky ... 35
Obrázek 9 - Schéma podmíněného (asynchronního) přenosu dat s jednosměrnou
korespondencí .. 36
Obrázek 10 - Schéma odděleného adresového prostoru .. 37
Obrázek 11 - Schéma podmíněného (asynchronního) přenosu dat s obousměrnou
korespondencí ... 38
Obrázek 12 - Animace zapojení binární sčítačky, kterou lze přepnout na odčítačku v
programu Multisim nahrána programem Adobe Captivate ... 39
10 SEZNAM LITERATURY

 Dostupné z: http://www.ucseanimovat.estranky.cz/clanky/cobytanico.html

 http://cs.wikipedia.org/wiki/PAL

 http://www.disneymovieslist.com/disney-movies.asp

 http://cs.wikipedia.org/wiki/Plo%CE%9Akov%C3%A1_animace

 https://www.toonboom.com/showcase/

 http://www.disneymovieslist.com/pixar-movies.asp
 Dostupné z: http://www.kozipribeh.cz/kozipribeh.htm

16. Michalík, Petr. Technika počítačů. 3. upravené a rozšířené vydání. Skriptum FPE

17. ADOBE CREATIVE TEAM. Adobe Flash CS5 Professional: Oficiální výukový kurz.
11 Resumé

With this bachelor's final project I wanted to create practice tests, practise exercises and the animation of electronic circuits, which not only could improve the quality of electronic courses set for the subject „Computer Technique 1“ but also could help students to improve the training.

The bachelor's final project is divided into six chapters. The first chapter handles theoretical part of the animation. The second chapter deals with the theoretical part of the computer program Adobe Flash in which I created the functional animation. The third chapter refers to the description of electronic circuits that are a part of the subject „Computer Technique 1“ and were animated in the Adobe Flash computer program. The fourth chapter presents the general description of animation creating in the computer program Adobe Flash. The penultimate chapter reviews the assignments and the right test solutions. The last chapter deals with the assistant exercises prepared for the electronic course „Computer Technique 1“.

When creating components for the electronic course „Computer Technique 1“ I faced no fundamental problems that could somehow menace the component creation. Most of the information was gathered from the book serving as lecture notes for the subject „Computer Technique 1“.

I think the electronic courses are beginning to be implemented not only at universities, secondary or elementary schools but also in other educational institutions. The fact that these courses are presented in an electronic form creates a large possibility for improvements and for addition of more other functions. We can say the electronic courses represent more than a supplement to educational offerings, in my opinion they will find a wide range of application in the future.
Všechny materiály k BP jsou vypáleny na přiloženém DVD, které obsahuje:

1. obrázky použité v textu a v animacích
2. zdrojové soubory flash animací ve formátu fla
3. flashové animace ve formátu swf
4. zdrojové soubory captivate animace ve formátu cp
5. captivate animace ve formátu swf
6. multisim schéma ve formátu ms10
7. bakalářskou práci ve formátu pdf
8. bakalářskou práci ve formátu docx