Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhan, Sultan Daud
dc.contributor.authorVizzari, Giuseppe
dc.contributor.authorBandini, Stefania
dc.contributor.authorBasalamah, Saleh
dc.contributor.editorSkala, Václav
dc.identifier.citationJournal of WSCG. 2014, vol. 22, no. 1, p. 21-30.en
dc.identifier.issn1213–6972 (hardcopy)
dc.identifier.issn1213–6980 (CD-ROM)
dc.identifier.issn1213–6964 (online)
dc.description.abstractUrbanisation is growingly generating crowding situations which generate potential issues for planning and public safety. This paper proposes new techniques of crowd analysis and precisely crowd flow segmentation and crowd counting framework for estimating the number of people in each flow segment. We use two foreground masks, one generated by Horn-Schunck optical flow, used by crowd flow segmentation, and another by Gaussian background subtraction, used by crowd counting framework. For crowd flow segmentation, we adopt K-means clustering algorithm which segments the crowd in different flows. After clustering, some small blobs can appear which are removed by blob absorption method. After blob absorption, crowd flow is segmented into different dominant flows. Finally, we estimate the number of people in each flow segment by using blob analysis and blob size optimization methods. Our experimental results demonstrate the effectiveness of the proposed method comparing to other stateof- the-art approaches and our proposed crowd counting framework estimates the number of people with about 90% accuracy.en
dc.format10 s.cs
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© Václav Skala - UNION Agencycs
dc.subjectanalýza davucs
dc.subjectsegmentace tokucs
dc.subjectpočítání lidícs
dc.subjectpočítačové zpracování obrazucs
dc.titleDetecting Dominant Motion Flows and People Counting in High Density Crowdsen
dc.subject.translatedcrowd analysisen
dc.subject.translatedflow segmentationen
dc.subject.translatedpeople countingen
dc.subject.translatedcomputer image processingen
Appears in Collections:Volume 22, Number 1 (2014)

Files in This Item:
File Description SizeFormat 
Khan.pdfPlný text1,71 MBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/11897

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.