Title: Fast estimation of gaussian mixture model parameters on GPU using CUDA
Other Titles: Rychlá estimace parametrů model Gaussovských směsí za využití GPU a architektury CUDA
Authors: Machlica, Lukáš
Vaněk, Jan
Zají­c, Zbyněk
Citation: MACHLICA, Lukáš; VANĚK, Jan; ZAJÍC, Zbyněk. Fast estimation of gaussian mixture model parameters on GPU using CUDA. In: The 12th International Conference on Parallel and Distributed Computing, Applications and Technologies: 20-22 October 2011, Gwangju, Jižní­ Korea. Gwangju: IEEE Press, 2011, p. 167-172. ISBN 978-0-7695-4564-6.
Issue Date: 2011
Publisher: IEEE Press
Document type: článek
URI: http://www.kky.zcu.cz/cs/publications/LukasMachlica_2011_FastEstimationof
ISBN: 978-0-7695-4564-6
Keywords: CUDA;SSE;GMM;GMM;EM;paralelní­ implementace
Keywords in different language: CUDA;SSE;GMM;GMM;EM;parallel implementation
Abstract in different language: Gaussian Mixture Model (GMM) statistics are required for maximum likelihood training as well as for adaptation techniques. In order to train/adapt a reliable model a lot of data are needed, what makes the estimation process time consuming. The paper presents an efficient implementation of estimation of GMM statistics on GPU using NVIDIA's Compute Unified Device Architecture (CUDA). Also an augmentation of the standard CPU version is proposed utilizing SSE instructions. Time consumptions of presented methods are tested on a large dataset of real speech data from the NIST Speaker Recognition Evaluation 2008. Estimation on GPU proves to be 100 times faster than the standard CPU version and 30 times faster than the SSE version assuming more than 256 mixtures, thus a huge speed-up was achieved without any approximations made in the estimation formulas. Proposed implementation was also compared to other implementations developed by other departments over the world and proved to be the fastest.
Rights: © Lukáš Machlica - Jan Vaněk - Zbyněk Zajíc
Appears in Collections:Články / Articles (KIV)
Články / Articles (KKY)
Články / Articles (NTIS)

Files in This Item:
File Description SizeFormat 
LukasMachlica_2011_FastEstimationof.pdfPlný text267,97 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/17041

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.