Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorMukovskiy, Albert
dc.contributor.authorLand, William M.
dc.contributor.authorSchack, Thomas
dc.contributor.authorGiese, Martin A.
dc.date.accessioned2016-01-07T08:50:03Z
dc.date.available2016-01-07T08:50:03Z
dc.date.issued2015
dc.identifier.citationJournal of WSCG. 2015, vol. 23, no. 1, p. 139-145.en
dc.identifier.issn1213–6972 (hardcopy)
dc.identifier.issn1213–6980 (CD-ROM)
dc.identifier.issn1213–6964 (online)
dc.identifier.urihttp://wscg.zcu.cz/WSCG2015/!_2015_Journal_WSCG-No-2.pdf
dc.identifier.urihttp://hdl.handle.net/11025/17151
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© Václav Skala - UNION Agencycs
dc.subjectpočítačová animacecs
dc.subjectjednoduchý pohybcs
dc.subjectmotorická koordinacecs
dc.subjectakční sekvencecs
dc.subjectpredikcecs
dc.titleModeling of predictive human movement coordination patterns for applications in computer graphicsen
dc.typearticleen
dc.typečlánekcs
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedThe planning of human body movements is highly predictive. Within a sequence of actions, the anticipation of a final task goal modulates the individual actions within the overall pattern of motion. An example is a sequence of steps, which is coordinated with the grasping of an object at the end of the step sequence. Opposed to this property of natural human movements, real-time animation systems in computer graphics often model complex activities by a sequential concatenation of individual pre-stored movements, where only the movement before accomplishing the goal is adapted. We present a learning-based technique that models the highly adaptive predictive movement coordination in humans, illustrated for the example of the coordination of walking and reaching. The proposed system for the real-time synthesis of human movements models complex activities by a sequential concatenation of movements, which are approximated by the superposition of kinematic primitives that have been learned from trajectory data by anechoic demixing, using a step-wise regression approach. The kinematic primitives are then approximated by stable solutions of nonlinear dynamical systems (dynamic primitives) that can be embedded in control architectures. We present a control architecture that generates highly adaptive predictive full-body movements for reaching while walking with highly human-like appearance. We demonstrate that the generated behavior is highly robust, even in presence of strong perturbations that require the insertion of additional steps online in order to accomplish the desired task.en
dc.subject.translatedcomputer animationen
dc.subject.translatedmovement primitivesen
dc.subject.translatedmotor coordinationen
dc.subject.translatedaction sequencesen
dc.subject.translatedpredictionen
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:Volume 23, Number 2 (2015)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Mukovskiy.pdfPlný text1,08 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/17151

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.