Full metadata record
DC FieldValueLanguage
dc.contributor.authorHrúz, Marek
dc.contributor.authorKrňoul, Zdeněk
dc.contributor.authorCampr, Pavel
dc.contributor.authorMüller, Luděk
dc.date.accessioned2016-01-08T08:40:28Z
dc.date.available2016-01-08T08:40:28Z
dc.date.issued2011
dc.identifier.citationHRÚZ, Marek; KRŇOUL, Zdeněk; CAMPR, Pavel; MÜLLER, Luděk. Towards automatic annotation of sign language dictionary corpora. In: Text, speech and dialogue. Berlin: Springer, 2011, p. 331-339. (Lectures notes in computer science; 6836). ISBN 978-3-642-23537-5.en
dc.identifier.isbn978-3-642-23537-5
dc.identifier.urihttp://www.kky.zcu.cz/cs/publications/HruzMarek_2011_TowardsAutomatic
dc.identifier.urihttp://hdl.handle.net/11025/17181
dc.format9 s.
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesLecture notes in computer science; 6836en
dc.rights© Marek Hrúz - Zdeněk Krňoul - Pavel Campr - Luděk Müllercs
dc.subjectznaková řečcs
dc.subjectpočítačové viděnícs
dc.subjectkategorizacecs
dc.titleTowards automatic annotation of sign language dictionary corporaen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedThis paper deals with novel automatic categorization of signs used in sign language dictionaries. The categorization provides additional information about lexical signs interpreted in the form of video files. We design a new method for automatic parameterization of these video files and categorization of the signs from extracted information. The method incorporates advanced image processing for detection and tracking of hands and head of signing character in the input image sequences. For tracking of hands we developed an algorithm based on object detection and discriminative probability models. For the tracking of head we use active appearance model. This method is a very powerful for detection and tracking of human face. We specify feasible conditions of the model enabling to use the extracted parameters for basic categorization of the non-manual component. We introduce an experiment with the automatic categorization determining symmetry, location and contact of hands, shape of mouth, close eyes and others. The result of experiment is primary the categorization of more than 200 signs and discussion of problems and next extension.en
dc.subject.translatedsign languageen
dc.subject.translatedcomputer visionen
dc.subject.translatedcategorizationen
dc.identifier.doi10.1007/978-3-642-23538-2_42
dc.type.statusPeer-revieweden
Appears in Collections:Články / Articles (NTIS)
Články / Articles (KIV)

Files in This Item:
File Description SizeFormat 
HruzMarek_2011_TowardsAutomatic.pdfPlný text202,48 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/17181

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.