Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorAnjos, Rafael dos
dc.contributor.authorPereira, João Madeiras
dc.contributor.authorGaspar, José António
dc.contributor.authorFernandes, Carla
dc.identifier.citationJournal of WSCG. 2017, vol. 25, no. 2, p. 115-122.en
dc.identifier.issn1213-6972 (print)
dc.identifier.issn1213-6980 (CD-ROM)
dc.identifier.issn1213-6964 (on-line)
dc.format8 s.cs
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesJournal of WSCGen
dc.rights© Václav Skala - UNION Agencycs
dc.subjectvideo založené na vykreslovánícs
dc.subjectreprezentace obrazucs
dc.subjectbodová mračnacs
dc.titleMultiview layered depth imageen
dc.description.abstract-translatedLayered Depth Images (LDI) compactly represent multiview images and videos and have widespread usage in image-based rendering applications. In its typical use case scenario of representing a scanned environment, it has proven to be a less costly alternative than separate viewpoint encoding. However, higher quality laser scanner hardware and different user interaction paradigms have emerged, creating scenarios where traditional LDIs have considerably lower efficacy. Wide-baseline setups create surfaces aligned to the viewing rays producing a greater amount of sparsely populated layers. Free viewpoint visualization suffers from the variant quantization of depths on the LDI algorithm, reducing resolution of the dataset in uneven directions. This paper presents an alternative representation to the LDI, in which each layer of data is positioned in different viewpoints that coincide with the original scanning viewpoints. A redundancy removal algorithm based on world-space distances as opposed to to image-space is discussed, ensuring points are evenly distributed and are not viewpoint dependent. We compared our proposed representation with traditional LDIs and viewpoint dependent encoding. Results showed the multiview LDI (MVLDI) creates a smaller number of layers and removes higher amounts of redundancy than traditional LDIs, ensuring no relevant portion of data is discarded in wider baseline setups.en
dc.subject.translatedvideo-based renderingen
dc.subject.translatedimage representationen
dc.subject.translatedpoint cloudsen
Vyskytuje se v kolekcích:Volume 25, Number 2 (2017)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Anjos.pdfPlný text10,42 MBAdobe PDFZobrazit/otevřít

Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/26289

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.