Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajput, Govind R
dc.contributor.authorPatil, V. S.
dc.contributor.authorJadhav, B. P.
dc.date.accessioned2018-01-03T08:18:27Z
dc.date.available2018-01-03T08:18:27Z
dc.date.issued2017
dc.identifier.citationApplied and Computational Mechanics. 2017, vol. 11, no. 2, p. 1-12.en
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/26592
dc.description.abstractIn this paper, we study the magnetohydrodynamic (MHD) mixed unsteady flow over a vertical porous plate. The system of non-linear partial differential equations governing the physical model is transformed into a system of non-linear ordinary differential equations via Lie group analysis. Using the Runge-Kutta fourth order method along with shooting technique the numerical analysis is carried out to study the effect of associated parameters on the velocity, temperature and concentration distribution. Computed results for the velocity, temperature and concentration distribution are discussed graphically.en
dc.format12 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.relation.ispartofseriesApplied and Computational Mechanicsen
dc.rights© 2017 University of West Bohemia. All rights reserved.en
dc.subjectMHDcs
dc.subjectporézní médiacs
dc.subjectanalýza symetriecs
dc.titleMHD mixed flow of unsteady convection with radiation over a vertical porous plate: Lie group symmetry analysisen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedMHDen
dc.subject.translatedporous mediaen
dc.subject.translatedsymmetry analysisen
dc.identifier.doihttps://doi.org/10.24132/acm.2017.380
dc.type.statusPeer-revieweden
Appears in Collections:Volume 11, number 2 (2017)
Volume 11, number 2 (2017)

Files in This Item:
File Description SizeFormat 
Rajput.pdfPlný text1,23 MBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/26592

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.