Title: On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli
Authors: Anoop, T.V.
Bobkov, Vladimír
Sasi, Sarath
Issue Date: 2018
Publisher: American Mathematical Society
Document type: článek
URI: 2-s2.0-85051788687
ISSN: 0002-9947
Keywords in different language: p-Laplacian;symmetries;shape derivative;Fucik spectrum;eigenvalue;eigenfunction;nonradiality.
Abstract in different language: Let B1 be a ball in RN centred at the origin and let B0 be a smaller ball compactly contained in B1. For p ∈ (1,∞), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B1\B0 strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p → 1 and p→ ∞ are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fuˇcik spectrum of the p-Laplacian on bounded radial domains.
Rights: Plný text není přístupný.
© American Mathematical Society
Appears in Collections:Články / Articles (KMA)

Files in This Item:
File SizeFormat 
Anoop, Bobkov, Sasi, Arxiv, Published_2018.pdf312,76 kBAdobe PDFView/Open    Request a copy

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/30446

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD