Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeng, Junkai
dc.contributor.authorZheng, Changwen
dc.contributor.authorLv, Pin
dc.contributor.authorCui, Tianyu
dc.contributor.authorCheng, Ye
dc.contributor.authorLingyu, Si
dc.contributor.editorSkala, Václav
dc.date.accessioned2019-05-13T09:06:44Z-
dc.date.available2019-05-13T09:06:44Z-
dc.date.issued2018
dc.identifier.citationWSCG '2018: short communications proceedings: The 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic May 28 - June 1 2018, p. 13-18.en
dc.identifier.isbn978-80-86943-41-1
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2018/!!_CSRN-2802.pdf
dc.identifier.urihttp://hdl.handle.net/11025/34647
dc.description.abstractDeep neural networks, such as Faster R-CNN, have been widely used in object detection. However, deep neural networks usually require a large-scale dataset to achieve desirable performance. For the specific application, UAV detection, training data is extremely limited in practice. Since annotating plenty of UAV images manually can be very resource intensive and time consuming, instead, we use PBRT to render a large number of photorealistic UAV images of high variation within a reasonable time. Using PBRT ensures the realism of rendered images, which means they are indistinguishable from real photographs to some extent. Trained with our rendered images, the Faster R-CNN has an AP of 80.69% on manually annotated UAV images test set, much higher than the one only trained with COCO 2014 dataset and PASCAL VOC 2012 dataset (43.36%). Moreover, our rendered image dataset contains not only bounding boxes of all UAVs, but also locations of some important parts of UAVs and locations of all pixels covered by UAVs, which can be used for more complicated application, such as mask detection or keypoint detection.en
dc.format6 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG '2018: short communications proceedingsen
dc.rights© Václav Skala - UNION Agencycs
dc.subjectdetekce objektůcs
dc.subjecthluboké učenícs
dc.subjectFaster R-CNNcs
dc.subjectPBRTcs
dc.subjectUAVcs
dc.titleUsing images rendered by PBRT to train faster R-CNN for UAV detectionen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedobject detectionen
dc.subject.translateddeep learningen
dc.subject.translatedfaster R-CNNen
dc.subject.translatedPBRTen
dc.subject.translatedUAVen
dc.identifier.doihttps://doi.org/10.24132/CSRN.2018.2802.3
dc.type.statusPeer-revieweden
Appears in Collections:WSCG '2018: Short Papers Proceedings

Files in This Item:
File Description SizeFormat 
Peng.pdfPlný text10,4 MBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/34647

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.