Full metadata record
DC FieldValueLanguage
dc.contributor.authorMetzgar, Jonathan Brian
dc.contributor.authorSemwal, Sudhanshu Kumar
dc.contributor.editorSkala, Václav
dc.date.accessioned2019-05-14T06:10:16Z-
dc.date.available2019-05-14T06:10:16Z-
dc.date.issued2018
dc.identifier.citationWSCG '2018: short communications proceedings: The 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic May 28 - June 1 2018, p. 87-96.en
dc.identifier.isbn978-80-86943-41-1
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2018/!!_CSRN-2802.pdf
dc.identifier.urihttp://hdl.handle.net/11025/34660
dc.description.abstractApproximate equations for rendering Fresnel reflectance abound in computer graphics. We take a fresh approach and consider not only the approximation but the display device as well. The sRGB color standard is finally giving way to wide color spaces such as Adobe RGB and DCI P3 which display more color. We present a preprocessing method to use measured spectral index of refraction data and the color space specification to synthesize an RGB complex index of refraction. Metals, in particular, generally require a spectral renderer, but we created a way to sample the complex index of refraction and absorptive index that acts like the color filter built into the display. Our novel contribution uses a normal distribution centered around the ideal display red, green, and blue wavelengths derived from the CIE xy coordinates and respective white point to window sample the complex index of refraction. We created a WebGL experimental platform that uses the Schlick inspired Lazanyi and Szirmay-Kalos (LSK) multispectral Fresnel approximation coupled with modern physically based BRDFs to simulate the appearance of metal. Our application can compare five different Fresnel implementations coupled with physically based Blinn- Phong and GGX microfacet models. We demonstrate that with reasonable filter widths, we eliminate the need for a spectral renderer for real-time rendering. Additionally, we utilize publicly available measurement data to simulate a variety of metals ranging from silver, gold, and copper to silicon, lead, and zinc.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG '2018: short communications proceedingsen
dc.rights© Václav Skala - UNION Agencycs
dc.subjectFresnelovo odrazové modelovánícs
dc.subjectrasterizacecs
dc.subjectfyzicky založené vykreslovánícs
dc.subjectkomplexní index lomucs
dc.subjectabsorpční indexcs
dc.titleOptimizing spectral fresnel reflectance for displaysen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedFresnel reflectance modelingen
dc.subject.translatedrasterizationen
dc.subject.translatedphysically based renderingen
dc.subject.translatedcomplex index of refractionen
dc.subject.translatedabsorptive indexen
dc.identifier.doihttps://doi.org/10.24132/CSRN.2018.2802.12
dc.type.statusPeer-revieweden
Appears in Collections:WSCG '2018: Short Papers Proceedings

Files in This Item:
File Description SizeFormat 
Metzgar.pdfPlný text6,92 MBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/34660

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.