Title: Development of a constitutive model of soft tissues for FE analyses using a bottom-up approach
Other Titles: Vývoj konstitutivního modelu měkkých tkání pro konečnoprvkové analýzy s využitím přístupu "bottom-up"
Authors: Vychytil, Jan
Holeček, Miroslav
Citation: VYCHYTIL, J., HOLEČEK, M. Development of a constitutive model of soft tissues for FE analyses using a bottom-up approach. Applied and Computational Mechanics, 2018, roč. 12, č. 2, s. 175-192. ISSN 1802-680X.
Issue Date: 2018
Publisher: University of West Bohemia
Document type: článek
article
URI: 2-s2.0-85067059019
http://hdl.handle.net/11025/34917
ISSN: 1802-680X
Keywords: konstitutivní model;měkké tkáně;RVE;nelineární odezva
Keywords in different language: constitutive model;soft tissues;RVE;nonlinear response
Abstract: Článek popisuje vytvoření dvouškálového anizotropního hyperelastického modelu, jehož mikrostruktura připomíná uspořádání měkkých tkání. Vychází z jednoduchých lineárních elementů - pružin. Aby bylo možné definovat hustotu deformační energie, jsou zavedeny pojmy invariant a pseudo-invariant. Přidáním nestlačitelného objemu získáváme vysoce nelineární odezvu modelu, jehož hustota deformační energie je dána jako výsledek optimalizační úlohy. V článku jsou prezentovány vlastnosti modelu, tj. anizotropie, předpětí, popis neafinních deformací a reprezentace reálných tkání.
Abstract in different language: This paper presents the development of a two-scale anisotropic hyperelastic material model whose microstructure is motivated by the arrangement of soft tissues. In a bottom-up approach, we start at the microscale, identifying the components that are relevant for our model. These components are represented by simplified mechanical elements, such as linear springs and incompressible volumes. The next step is to use the concept of the representative volume element connecting the micro- and macroscales. Introducing principal material directions, the notion of invariants and pseudo-invariants is employed to derive a formula for the strain energy function. In fact, two hyperelastic models are proposed. In the simplified one, the microstructure is formed of a network of linear springs. In the second one, an incompressible volume is added to the representation of the microstructure. This results in the model’s having a nonlinear response, with the strain energy function arising as a solution to a minimization problem. The properties of the strain energy function and the influence of anisotropy are demonstrated on a simple tension test and a simple shear test. Applications of the proposed model to the description of prestressed materials, non-affine deformations, and real tissue modelling are presented.
Rights: © University of West Bohemia
Appears in Collections:OBD

Files in This Item:
File SizeFormat 
2018_ACM.pdf907,28 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/34917

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD