Title: Additive manufacturing of maraging steel on low alloyed high strength TRIP steel
Authors: Kučerová, Ludmila
Jeníček, Štepán
Zetková, Ivana
Citation: JIRKOVÁ, Hana ed.; JENÍČEK, Štepán ed. Proceedings PING 2019: modern trends in material engineering: 10.-13.09.2019, Pilsen. 1. vyd. Plzeň: University of West Bohemia, 2019, s. 10. ISBN 978-80-261-0879-5.
Issue Date: 2019
Publisher: University of West Bohemia
Document type: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/35205
ISBN: 978-80-261-0879-5
Keywords: selektivní laserové tavení;vysokopevnostní ocel;hybridní klouby
Keywords in different language: selective laser melting;maraging steel;hybrid joints
Abstract in different language: Hybrid parts were successfully produced by additive manufacturing of maraging steel 18Ni 300 grade on the top of low alloyed advanced high strength steel. High strength steel was alloyed by 0.2% C, 1.5% Al, 0.5% Si, 1.5% Mn and micro alloyed by 0.06% Nb (all in weight %). The steel was prepared in the form of bars either directly in asforged and air cooled state or after two step heat treatment typical for TRIP (transformation induced plasticity) steels. Subsequent additive manufacturing of maraging steel was carried out by selective laser melting (SLM) in the EOS M290 machine using parameters recommended for tool steels by printer supplier. Suitable post processing heat treatments were applied to hybrid parts to relive residual stresses and to achieve desired mechanical properties. Hybrid parts were subjected either to solution annealing or to two step heat treatment with the second hold in the temperature region of bainitic transformation. The best combination of ultimate tensile strength of 860 MPa and total elongation of 19% was obtained for hybrid part where high strength steel underwent two step steel heat treatment prior to additive manufacturing and no post-processing was carried out after additive manufacturing. The joints were characterised by light and scanning electron microscopy, hardness measurement across the interface and tensile test of the joint area. Detail characterisation of interface area microstructure and local chemical composition was carried out.
Rights: © University of West Bohemia
Appears in Collections:Proceedings PING 2019: modern trends in material engineering
Konferenční příspěvky / Conference Papers (RTI)
Proceedings PING 2019: modern trends in material engineering

Files in This Item:
File Description SizeFormat 
Jenicek.pdfPlný text415,5 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/35205

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.