Full metadata record
DC FieldValueLanguage
dc.contributor.authorGangur, Mikuláš
dc.contributor.authorSvoboda, Milan
dc.contributor.authorGrolmus, Petr
dc.date.accessioned2021-01-25T11:00:24Z-
dc.date.available2021-01-25T11:00:24Z-
dc.date.issued2020
dc.identifier.citationGANGUR, M., SVOBODA, M., GROLMUS, P. A comparison of different approaches used in the learnng process by means of the moodle data analysis. In: DIVAI 2020 - 13th International Scientific Conference on Distance Learning in Applied Informatics. Prague: Wolters Kluwer, 2020. s. 521-532. ISBN 978-80-7598-841-6 , ISSN 2464-7470.cs
dc.identifier.isbn978-80-7598-841-6
dc.identifier.issn2464-7470
dc.identifier.urihttp://hdl.handle.net/11025/42529
dc.format12 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherWolters Kluweren
dc.relation.ispartofseriesDIVAI 2020 - 13th International Scientific Conference on Distance Learning in Applied Informaticsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Wolters Kluweren
dc.titleA comparison of different approaches used in the learning process by means of the moodle data analysisen
dc.title.alternativeSrovnání různých přístupů k procesu výuky pomocí analýzy dat z Moodlecs
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessrestrictedAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedThe contribution deals with the application of data mining methods in the log data of the Moodle learning management system. In the first step the attention is paid to the pre-processing of data cleaning, transformation, and aggregation. This pre-processing of data preparation focuses on logs that describe the students’ assignments and quiz activities in detail. The selected activities do not belong to the evaluation quizzes, but these quizzes and assignments are constructed as training activities. The developed automatic generator of parameterized tasks allows to assemble such quizzes with unique assignments for each student in the course. The used data mining methods analyse the relationship between students’ activities during the preparation for the final exam quiz and the final exam grade. The data of the courses with optional exercises are compared with the data of the courses with obligatory exercises. Based on these data the activities and success rate are analysed. The activities of both types of courses are compared and then the dependency between the activities and success rate is studied. Students with optional and obligatory exercises do not have any statistically significant different results. The data in the group with optional exercises show a significant difference in success between the volunteering students and the students without any activity. The tests confirm the dependency between the activity indicators and the results of the final exercise. On the other hand, these activities had no such effect on the outcome of the final exam.en
dc.subject.translatedKnowledge Discoveryen
dc.subject.translatedEducational Data Miningen
dc.subject.translatedMoodleen
dc.subject.translatedData Pre-processingen
dc.subject.translatedData Preparationen
dc.type.statusPeer-revieweden
dc.identifier.obd43930284
dc.project.IDSGS-2018-042/Aplikace kvantitativn metod v ekonomiics
Appears in Collections:Konferenční příspěvky / Conference papers (KVD)
Konferenční příspěvky / Conference papers (KEM)
OBD

Files in This Item:
File SizeFormat 
divai2020_Gangur.pdf835,47 kBAdobe PDFView/Open    Request a copy


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/42529

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD