Title: Mutual Support of Data Modalities in the Task of Sign Language Recognition
Other Titles: Vzájemná podpora datových modalit v úloze rozpoznávání znakového jazyka
Authors: Gruber, Ivan
Krňoul, Zdeněk
Hrúz, Marek
Kanis, Jakub
Boháček, Matyáš
Citation: GRUBER, I. KRŇOUL, Z. HRÚZ, M. KANIS, J. BOHÁČEK, M. Mutual Support of Data Modalities in the Task of Sign Language Recognition. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville: IEEE, 2021. s. 3419-3428. ISBN: 978-1-66544-899-4 , ISSN: 2160-7508
Issue Date: 2021
Publisher: IEEE
Document type: konferenční příspěvek
URI: 2-s2.0-85116062397
ISBN: 978-1-66544-899-4
ISSN: 2160-7508
Keywords: rozpoznávání znakového jazyka;konvoluční neuronové sítě
Keywords in different language: sign language recognition;convolutional neural networks
Abstract in different language: This paper presents a method for automatic sign language recognition that was utilized in the CVPR 2021 ChaLearn Challenge (RGB track). Our method is composed of several approaches combined in an ensemble scheme to perform isolated sign-gesture recognition. We combine modalities of video sample frames processed by a 3D ConvNet (I3D), with body-pose information in the form of joint locations processed by a Transformer, hand region images transformed into a semantic space, and linguistically defined locations of hands. Although the individual models perform sub-par (60% to 93% accuracy on validation data), the weighted ensemble results in 95.46% accuracy.
Rights: Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
Appears in Collections:Konferenční příspěvky / Conference Papers (KKY)
Konferenční příspěvky / Conference Papers (KKY)

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/47308

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD