Title: Catalytic Performance of Alumina-Supported Cobalt Carbide Catalysts for Low-Temperature Fischer-Tropsch Synthesis
Authors: Gholami, Zahra
Tišler, Zdeněk
Svobodová, Eliška
Hradecká, Ivana
Sharkov, Nikita
Gholami, Fatemeh
Citation: GHOLAMI, Z. TIŠLER, Z. SVOBODOVÁ, E. HRADECKÁ, I. SHARKOV, N. GHOLAMI, F. Catalytic Performance of Alumina-Supported Cobalt Carbide Catalysts for Low-Temperature Fischer-Tropsch Synthesis. Catalysts, 2022, roč. 12, č. 10, s. nestránkováno. ISSN: 2073-4344
Issue Date: 2022
Publisher: MDPI
Document type: článek
URI: 2-s2.0-85140829556
ISSN: 2073-4344
Keywords in different language: Fischer-Tropsch;cobalt carbide;active phase;product distribution;metallic cobalt
Abstract in different language: The determination of the catalyst's active phase helps improve the catalytic performance of the Fischer-Tropsch (FT) synthesis. Different phases of cobalt, including cobalt oxide, carbide, and metal, exist during the reaction. The content of each phase can affect the catalytic performance and product distribution. In this study, a series of cobalt carbide catalysts were synthesized by exposure of Co/Al2O3 catalyst to CH4 at different temperatures from 300 degrees C to 800 degrees C. The physicochemical properties of the carbide catalysts (CoCx/Al2O3) were evaluated by different characterization methods. The catalytic performances of the catalysts were investigated in an autoclave reactor to determine the role of cobalt carbides on the CO conversion and product distribution during the reaction. XRD and XPS analysis confirmed the presence of Co2C in the prepared catalysts. The higher carbidation temperature resulted in the decomposition of methane into hydrogen and carbon, and the presence of graphitic carbon was confirmed by XRD, XPS, SEM, and Raman analysis. The Co2C also decomposed to metallic cobalt and carbon, and the content of cobalt carbide decreased at higher carbidation temperatures. Higher content of Co2C resulted in a lower CO conversion and higher selectivity to light alkanes, mainly methane. The higher carbidation temperature resulted in the decomposition of Co2C to metallic cobalt with higher activity in the FT reaction. The CO conversion increased by increasing the carbidation temperature from 300 degrees C to 800 degrees C, due to the higher content of metallic cobalt. In the presence of pure hydrogen, the Co2C could be converted mainly into hexagonal, close-packed (hcp) Co with higher activity for dissociative adsorption of CO, which resulted in higher catalyst activity and selectivity to heavier hydrocarbons.
Rights: © authors
Appears in Collections:Články / Articles

Files in This Item:
File SizeFormat 
GHOLAMI_Catalysts-12-01222 (1).pdf6,36 MBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/51490

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD