Title: A comparative study of 1D and 3D hemodynamics in patient-specific hepatic portal vein networks
Authors: Jonášová, Alena
Bublík, Ondřej
Vimmr, Jan
Citation: Applied and Computational Mechanics. 2014, vol. 8, no. 2, p. 177-186.
Issue Date: 2014
Publisher: University of West Bohemia
Document type: článek
URI: http://www.kme.zcu.cz/acm/acm/article/view/279/301
ISSN: 1804-680X (Print)
2336-1182 (Online)
Keywords: průtok krve;průtokový model;metoda konečných objemů;Windkesselův model;hemodynamika;1D modely;3D modely;počítačová simulace;portální žíla
Keywords in different language: blood flow;flow model;finite volume method;Windkessel model;hemodynamics;1D models;3D models;computer simulation;portal vein
Abstract: The development of software for use in clinical practice is often associated with many requirements and restrictions set not only by the medical doctors, but also by the hospital’s budget. To meet the requirement of reliable software, which is able to provide results within a short time period and with minimal computational demand, a certain measure of modelling simplification is usually inevitable. In case of blood flow simulations carried out in large vascular networks such as the one created by the hepatic portal vein, simplifications are made by necessity. The most often employed simplification includes the approach in the form of dimensional reduction, when the 3D model of a large vascular network is substituted with its 1D counterpart. In this context, a question naturally arises, how this reduction can affect the simulation accuracy and its outcome. In this paper, we try to answer this question by performing a quantitative comparison of 3D and 1D flow models in two patient-specific hepatic portal vein networks. The numerical simulations are carried out under average flow conditions and with the application of the three-element Windkessel model, which is able to approximate the downstream flow resistance of real hepatic tissue. The obtained results show that, although the 1D model can never truly substitute the 3D model, its easy implementation, time-saving model preparation and almost no demands on computer technology dominate as advantages over obvious but moderate modelling errors arising from the performed dimensional reduction.
Rights: © 2014 University of West Bohemia. All rights reserved.
Appears in Collections:Volume 8, number 2 (2014)
Články / Articles (NTIS)
Volume 8, number 2 (2014)

Files in This Item:
File Description SizeFormat 
Jonasova.pdfPlný text2,12 MBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/11956

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.