Název: Extracting separation surfaces of path line oriented topology in periodic 2D time-dependent vector fields
Autoři: Shi, Kuangyu
Theisel, Holger
Weinkauf, Tino
Hauser, Helwig
Hege, Hans-Christian
Seidel, Hans Peter
Citace zdrojového dokumentu: Journal of WSCG. 2007, vol. 15, no. 1-3, p. 75-82.
Datum vydání: 2007
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: article
článek
URI: http://wscg.zcu.cz/wscg2007/Papers_2007/journal/!WSCG2007_Journal_Final.zip
http://hdl.handle.net/11025/1429
ISBN: 978-80-86943-00-8
ISSN: 1213-6972 (hardcopy)
1213-6964 (online)
1213-6980 (CD-ROM)
Klíčová slova: vizualizace toku;časově závislá vektorová pole;topologické metody
Klíčová slova v dalším jazyce: flow visualization;time-dependent vector fields;topological methods
Abstrakt: This paper presents an approach to extracting the separation surfaces from periodic 2D time-dependent vector fields based on a recently introduced path line oriented topology. This topology is based on critical path lines which repeat the same spatial cycle per time period. Around those path lines there are areas of similar asymptotic flow behavior (basins) which are captured by a 2D Poincaré map as a discrete dynamical system. Due to pseudo discontinuities in this map and the discrete integration scheme, separatrices between the basins can’t be obtained as integral curves. Instead we choose a point-wise approach to segment the Poincaré map and apply image analysis algorithms to extract the 2D separation curves. Starting from those curves we integrate separation surfaces which partition the periodic 2D time-dependent vector field into areas of similar path line behavior. We apply our approach to a number of data sets to demonstrate its utility.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:Volume 15, number 1-3 (2007)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Shi.pdfPlný text1,1 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/1429

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.