Full metadata record
DC FieldValueLanguage
dc.contributor.authorSayyad, Atteshamuddin Shamshuddin
dc.contributor.authorGhugal, Yuwaraj M.
dc.identifier.citationApplied and Computational Mechanics. 2012, vol. 6, no. 2, p. 185-196.en
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.description.abstractIn this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.en
dc.format12 s.cs
dc.publisherUniversity of West Bohemiaen
dc.relation.ispartofseriesApplied and Computational Mechanicsen
dc.rights© 2012 University of West Bohemia. All rights reserved.en
dc.subjectzkoušení materiálucs
dc.subjectvlečné třenícs
dc.subjectnamáhání tělescs
dc.subjectsimulace a modelovánícs
dc.titleBuckling analysis of thick isotropic plates by using exponential shear deformation theoryen
dc.subject.translatedmaterial testingen
dc.subject.translateddrag frictionen
dc.subject.translatedload of bodiesen
dc.subject.translatedsimulation and modellingen
Appears in Collections:Volume 6, number 2 (2012)
Volume 6, number 2 (2012)

Files in This Item:
File Description SizeFormat 
188.pdf271,17 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/1839

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.