Title: The shortest path finding between two points on a polyhedral surface
Authors: Popov, Eugene Vladimirovich
Popova, Tatyana Petrovna
Rotkov, Sergej Igorevich
Citation: WSCG 2014: communication papers proceedings: 21st International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 1-10.
Issue Date: 2014
Publisher: Václav Skala - UNION Agency
Document type: konferenční příspěvek
URI: wscg.zcu.cz/WSCG2014/!!_2014-WSCG-Communication.pdf
ISBN: 978-80-86943-71-8
Keywords: struktury tahových tkanin;geodetická linka;výstřižek materiálu;nejkratší cesty;polyhedrální povrch
Keywords in different language: tensile fabric structures;geodesic line;cutting pattern;shortest paths;polyhedral surface
Abstract in different language: The paper describes the approximate method of the shortest path finding between two points on a surface. This problem occurs when generating a cutting pattern after the form of the fabric tensile surface is found. The shortest path finding is reduced to the problem of finding the geodesic line on the surface. However, the numerical problem solution of the form finding of fabric tensile structure leads to the fact that the final surface is represented by an arbitrary polyhedron. There is no analytical problem solution of finding shortest paths in this case. The described method allows finding the shortest path on a surface of any regular polyhedron form.
Rights: @ Václav Skala - UNION Agency
Appears in Collections:WSCG 2014: Communication Papers Proceedings

Files in This Item:
File Description SizeFormat 
Popov.pdfPlný text1,34 MBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/26371

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.