Title: Regularity criteria for the Navier-Stokes equations based on one component of velocity
Authors: Guo, Zhengguang
Caggio, Matteo
Skalak, Zdenek
Citation: GUO, Z., CAGGIO, M., SKALAK, Z. Regularity criteria for the Navier-Stokes equations based on one component of velocity. Nonlinear analysis-real world applications, 2017, roč. 35, č. JUN 2017, s. 379-396. ISSN 1468-1218.
Issue Date: 2017
Publisher: Elsevier
Document type: článek
URI: http://hdl.handle.net/11025/29184
ISSN: 1468-1218
Keywords in different language: Navier–Stokes equations Regularity of solutions Regularity criteria Anisotropic Lebesgue spaces
Abstract in different language: We study the regularity criteria for the incompressible Navier-Stokes equations in the whole space $\mathbb{R}^3$ based on one velocity component, namely $u_3$, $\nabla u_3$ and $\nabla^2 u_3$. We use a generalization of the Troisi inequality and anisotropic Lebesgue spaces and prove, for example, that the condition $\nabla u_3 \in L^\beta(0,T;L^p)$, where $2/\beta + 3/p = 7/4+1/(2p)$ and $p\in (2,\infty]$, yields the regularity of $u$ on $(0,T]$.
Rights: Plný text není přístupný.
© Elsevier
Appears in Collections:Články / Articles (KMA)

Files in This Item:
File SizeFormat 
caggio.pdf678,28 kBAdobe PDFView/Open    Request a copy

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/29184

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD