Title: Movement EEG classification using parallel Hidden Markov Models
Authors: Dobiáš, Martin
Šťastný, Jakub
Citation: 2016 International Conference on Applied Electronics: Pilsen, 6th – 7th September 2016, Czech Republic, p.65-68.
Issue Date: 2016
Publisher: Západočeská univerzita v Plzni
Document type: konferenční příspěvek
URI: http://hdl.handle.net/11025/35189
ISBN: 978–80–261–0601–2 (Print)
978–80–261–0602–9 (Online)
ISSN: 1803–7232 (Print)
1805–9597 (Online)
Keywords: elektroencefalografie;skryté Markovovy modely;elektrody;erbium;indexy;modelování mozku
Keywords in different language: electroencephalography;hidden Markov models;electrodes;erbium;indexes;brain modeling
Abstract in different language: In this contribution we examine the use and utility of parallel HMM classification in single-trial movement-EEG classification of index finger reaching and grasping movement. Parallel HMMs allow us to easily utilize the information contained in multiple channels. Using HMM classifier output in parallel from examined EEG channels we have been able to achieve as good a classification score as with single electrode results, further we do not rely on a single electrode giving persistently good results. Our parallel approach has the added benefit of not having to rely on small inter-session variability as it gives very good results with fewer classifier parameters being optimized. Without any classification optimization we can get a score improvement of 11.2% against randomly selected physiologically relevant electrode. If we use subject specific information we can further improve on the reference score by 1%, achieving a classification score of 84.2±0.7%.
Rights: © Západočeská univerzita v Plzni
Appears in Collections:Applied Electronics 2016
Applied Electronics 2016

Files in This Item:
File Description SizeFormat 
Dobias.pdfPlný text755,44 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/35189

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.