DC FieldValueLanguage
dc.contributor.authorTomiczek, Petr
dc.date.accessioned2019-11-18T11:00:27Z-
dc.date.available2019-11-18T11:00:27Z-
dc.date.issued2019
dc.identifier.citationTOMICZEK, P. Second order problem with a symmetric nonlinearity. In: Aplimat : Journal of Applied Mathematics. Bratislava: Slovak University of Technology in Bratislava, 2019. s. 1164-1173. ISBN 978-1-5108-8214-0.en
dc.identifier.isbn978-1-5108-8214-0
dc.identifier.uri2-s2.0-85070812668
dc.identifier.urihttp://hdl.handle.net/11025/35954
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherSlovak University of Technology in Bratislavaen
dc.relation.ispartofseriesAplimat : Journal of Applied Mathematicsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Slovak University of Technology in Bratislavaen
dc.titleSecond order problem with a symmetric nonlinearityen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessrestrictedAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedThe purpose of this work is to study the existence of a solution to the nonlinear second order ordinary differential equation u''(x) + m2 u(x) + g(x, u) = f(x) , x ∈ [0, T] , u(0) = u(π) = 0 , where m ∈ N, g is a Carathéodory function, f ∈ L1(0, π), a quotient g(x,s) lies between −2m + 1 and 2m + 1. The technique we use is the saddle point theorem.en
dc.subject.translatedSecond order problemen
dc.subject.translatedvariational methoden
dc.subject.translatedcritical pointen
dc.type.statusPeer-revieweden
dc.identifier.obd43927017
dc.project.IDLO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnostcs
Appears in Collections:Konferenční příspěvky / Conference Papers (KMA)
OBD

Files in This Item:
File SizeFormat
Please use this identifier to cite or link to this item: `http://hdl.handle.net/11025/35954`