Full metadata record
DC FieldValueLanguage
dc.contributor.authorMinár, Jan
dc.contributor.authorMankovsky, Sergey
dc.contributor.authorBraun, Juergen
dc.contributor.authorEbert, Hubert
dc.date.accessioned2020-09-07T10:00:16Z-
dc.date.available2020-09-07T10:00:16Z-
dc.date.issued2020
dc.identifier.citationMINÁR, J., MANKOVSKY, S., BRAUN, J., EBERT, H. One-step model of photoemission at finite temperatures: Spin fluctuations of Fe(001). Physical Review B, 2020, roč. 102, č. 3. ISSN 2469-9950.en
dc.identifier.issn2469-9950
dc.identifier.urihttp://hdl.handle.net/11025/39626
dc.format9 s.
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relation.ispartofseriesPhysical Review Ben
dc.rightsPlný text není přístupný.cs
dc.rights© American Physical Societyen
dc.titleOne-step model of photoemission at finite temperatures: Spin fluctuations of Fe(001)en
dc.typečlánekcs
dc.typearticleen
dc.rights.accessclosedAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedVarious technical developments have extended the potential of angle-resolved photoemission spectroscopy (ARPES) tremendously over the last 20 years. In particular improved momentum, energy, and spin resolution as well as the use of photon energies from a few eV up to several keV make ARPES a rather unique tool to investigate the electronic properties of solids and surfaces. With our work we present a generalization of the state-of-the-art description of the photoemission process, the so-called one-step model that describes excitation, transport to the surface, and escape into the vacuum in a coherent way. In particular, we present a theoretical description of temperature-dependent ARPES with a special emphasis on spin fluctuations. Finite-temperature effects are included within the so-called alloy analogy model which is based on the coherent potential approximation, and this method allows us to describe uncorrelated lattice vibrations in combination with spin fluctuations quantitatively on the same level of accuracy. To demonstrate the applicability of our approach a corresponding numerical analysis has been applied to spin- and angle-resolved photoemission of Fe(100) at finite temperatures.en
dc.subject.translatedELECTRONIC-STRUCTUREen
dc.subject.translatedRESOLVED PHOTOEMISSIONen
dc.subject.translatedEXCHANGE INTERACTIONSen
dc.subject.translatedLATTICE DISTORTIONen
dc.subject.translatedDILUTE ALLOYSen
dc.subject.translatedFEen
dc.subject.translatedMETALSen
dc.subject.translated1ST-PRINCIPLESen
dc.subject.translatedFERROMAGNETISMen
dc.subject.translatedDEPENDENCEen
dc.identifier.doi10.1103/PhysRevB.102.035107
dc.type.statusPeer-revieweden
dc.identifier.document-number544846500003
dc.identifier.obd43930035
dc.project.IDEF15_003/0000358/Výpočetní a experimentální design pokročilých materiálů s novými funkcionalitamics
Appears in Collections:Články / Articles (RAM)
OBD

Files in This Item:
File SizeFormat 
Minar_MMBE20_PhysRevB.102.035107_Fe001_fluct.pdf1,16 MBAdobe PDFView/Open    Request a copy


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/39626

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD