Title: Neutron absorber for VVER-1000 final disposal cask
Authors: Lovecký, Martin
Závorka, Jiří
Jiřičková, Jana
Škoda, Radek
Citation: LOVECKÝ, M., ZÁVORKA, J., JIŘIČKOVÁ, J., ŠKODA, R. Neutron absorber for VVER-1000 final disposal cask. In: Proceedings : 29th International Conference Nuclear Energy for New Europe (NENE 2020). Ljubljana: Nuclear Society of Slovenia, 2020. s. 1502.1-1502.8. ISBN 978-961-6207-49-2.
Issue Date: 2020
Publisher: Nuclear Society of Slovenia
Document type: konferenční příspěvek
URI: http://hdl.handle.net/11025/42642
ISBN: 978-961-6207-49-2
Keywords in different language: criticality safety;nuclear fuel;final disposal;Monte Carlo;VVER-1000
Abstract in different language: The recent increasing demand for better nuclear fuel utilization requires higher enriched uranium fuels which is a challenge for spent fuel handling facilities in all countries with nuclear power plants. The operation with higher enriched fuels leads to reduced reserves to legislative and safety limits of spent fuel transport, storage and final disposal facilities. In some cases, the required boron amount in the absorber plates or tubes can be higher than current metallurgy processes allows. This study addresses the neutron absorber solution with significantly increased nuclear safety and improved economics where a new concept of inseparable neutron absorber is introduced to achieve fuel reactivity decrease. Same or better criticality safety is achieved with significantly lower or even no boron content in the cask basket absorber when compared to current concepts. Alternatively, it is possible to reduce fuel assembly pitch with the same boron amount and subsequently decrease overall cask dimensions and its cost. Because of less strict requirements for absorber material when compared to active core environment and better spatial position inside spent fuel handling facility, the choice of absorber material expands currently used boron element. Erbium, cadmium, gadolinium, hafnium, samaria and dysprosium elements are among the most suitable materials. Criticality safety analysis of the recent VVER-1000 final disposal cask with 3 fuel assemblies is performed with the new neutron absorber concept.
Rights: Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
© Nuclear Society of Slovenia
Appears in Collections:Konferenční příspěvky / Conference papers (RICE)
Konferenční příspěvky / Conference Papers (KEE)

Files in This Item:
File SizeFormat 
Lovecky_NENE2020_1502.pdf956,27 kBAdobe PDFView/Open    Request a copy

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/42642

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD