Title: Every 3-connected {K(1,3), Z(7)}-free graph of order at least 21 is Hamilton-connected
Authors: Ryjáček, Zdeněk
Vrána, Petr
Citation: RYJÁČEK, Z., VRÁNA, P. Every 3-connected {K(1,3), Z(7)}-free graph of order at least 21 is Hamilton-connected. Discrete mathematics, 2021, roč. 344, č. 6. ISSN 0012-365X.
Issue Date: 2021
Publisher: Elsevier
Document type: článek
URI: 2-s2.0-85101530411
ISSN: 0012-365X
Keywords in different language: Hamilton-connected;closure;forbidden subgraph;claw-free;Z(i)-free
Abstract in different language: For a positive integer i, Z(i) is the graph obtained by attaching an endvertex of a path of length i to a vertex of a triangle. We prove that every 3-connected {K(1,3), Z(7)}-free graph is Hamilton-connected, with one exceptional graph. The result is sharp.I
Rights: Plný text není přístupný.
© Elsevier
Appears in Collections:Články / Articles (KMA)
Články / Articles (NTIS)

Files in This Item:
File SizeFormat 
1-s2.0-S0012365X21000637-main.pdf610,87 kBAdobe PDFView/Open    Request a copy

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/43649

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD