Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorFatima, Mahjabeen
dc.contributor.authorZahra, Syedah Afsheen
dc.contributor.authorKhan, Saleem Ayaz
dc.contributor.authorAkinwande, Deji
dc.contributor.authorMinár, Jan
dc.contributor.authorRizwan, Syed
dc.date.accessioned2022-02-28T11:00:28Z-
dc.date.available2022-02-28T11:00:28Z-
dc.date.issued2021
dc.identifier.citationFATIMA, M. ZAHRA, SA. KHAN, SA. AKINWANDE, D. MINÁR, J. RIZWAN, S. Experimental and Computational Analysis of MnO2@V2C-MXene for Enhanced Energy Storage. Nanomaterials, 2021, roč. 11, č. 7, s. nestránkováno. ISSN: 2079-4991cs
dc.identifier.issn2079-4991
dc.identifier.uri2-s2.0-85108831405
dc.identifier.urihttp://hdl.handle.net/11025/47052
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherMDPIen
dc.relation.ispartofseriesNanomaterialsen
dc.rights© authorsen
dc.titleExperimental and Computational Analysis of MnO2@V2C-MXene for Enhanced Energy Storageen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedHerein, we studied the novel and emerging group of 2D materials namely MXene along with its nanocomposites. This work entails detailed experimental as well as computational study of the electrochemical behavior of vanadium carbide (V2CTx) MXene and MnO2-V2C nanocomposite with varying percentages of MnO2. A specific capacitance of 551.8 F/g was achieved for MnO2-V2C nanocomposite in 1 M KOH electrolyte solution, which is more than two times higher than the gravimetric capacitance of 196.5 F/g obtained for V2C. The cyclic stability achieved for the MnO2- V2C nanocomposite resulted in a retentivity of 96.5% until 5000 cycles. The c-lattice parameter achieved for MXene is 22.6 Å, which was 13.01 Å for MAX phase. The nanocomposite resulted in a c-lattice parameter of 27.2 Å, which showed that the spatial distance between the MXene layers was efficiently obtained. The method of wet etching was used for the preparation of pristine MXene and the liquid phase precipitation method was opted for the synthesis of the MnO2-V2C nanocomposite. Density functional theory calculation was exercised so as to complement the experimental results and to understand the microscopic details, such as structure stability and electronic structure. The current report presents a comprehensive experimental and computational study on 2D MXenes for future energy storage applicationsen
dc.subject.translatedV2C MXeneen
dc.subject.translatedenergy storageen
dc.subject.translatedsupercapacitorsen
dc.subject.translatedtwo-dimensional materialsen
dc.subject.translateddensity functional theoryen
dc.identifier.doi10.3390/nano11071707
dc.type.statusPeer-revieweden
dc.identifier.document-number676526000001
dc.identifier.obd43935069
dc.project.IDEF15_003/0000358/Výpočetní a experimentální design pokročilých materiálů s novými funkcionalitamics
Vyskytuje se v kolekcích:Články / Articles (RAM)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
MINAR_FZK+21_MnO2MXenen_Saleem_Khan_nanomaterials_11_1707_2021.pdf13,48 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/47052

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD