Full metadata record
DC FieldValueLanguage
dc.contributor.authorSkorkovská, Lucie
dc.contributor.authorZajíc, Zbyněk
dc.identifier.citationSKORKOVSKÁ, Lucie; ZAJÍC, Zbyněk. Score normalization methods applied to topic identification. In: Text, speech and dialogue. Berlin: Springer, 2014, p. 133-140. (Lecture notes in computer science; 8655). ISBN 978-3-319-10815-5.en
dc.format8 s.
dc.relation.ispartofseriesLecture notes in computer science; 8655en
dc.rights© Lucie Skorkovská - Zbyněk Zajíccs
dc.subjectidentifikace tématucs
dc.subjectmulti-label klasifikace textucs
dc.subjectnaivní bayesovská klasifikacecs
dc.subjectnormalizace skórecs
dc.titleScore normalization methods applied to topic identificationen
dc.title.alternativeMetody normalizace skóre použité pro identifikaci tématucs
dc.description.abstract-translatedMulti-label classification plays the key role in modern categorization systems. Its goal is to find a set of labels belonging to each data item. In the multi-label document classification unlike in the multi-class classification, where only the best topic is chosen, the classifier must decide if a document does or does not belong to each topic from the predefined topic set. We are using the generative classifier to tackle this task, but the problem with this approach is that the threshold for the positive classification must be set. This threshold can vary for each document depending on the content of the document (words used, length of the document, ...). In this paper we use the Unconstrained Cohort Normalization, primary proposed for speaker identification/verification task, for robustly finding the threshold defining the boundary between the correct and the incorrect topics of a document. In our former experiments we have proposed a method for finding this threshold inspired by another normalization technique called World Model score normalization. Comparison of these normalization methods has shown that better results can be achieved from the Unconstrained Cohort Normalization.en
dc.subject.translatedtopic identificationen
dc.subject.translatedmulti-label text classificationen
dc.subject.translatednaive bayes classificationen
dc.subject.translatedscore normalizationen
Appears in Collections:Články / Articles (NTIS)

Files in This Item:
File Description SizeFormat 
LucieSkorkovska_2014_ScoreNormalization.pdfPlný text188,76 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/17046

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.