Název: Lyusternik-Graves Theorems for the Sum of a Lipschitz Function and a Set-valued Mapping
Další názvy: Lyusternikova-Gravesova věta pro součet lipschitzovské funkce a mnohoznačného zobrazení
Autoři: Cibulka, Radek
Dontchev, Asen L.
Veliov, Vladimir M.
Citace zdrojového dokumentu: CIBULKA, Radek, DONTCHEV, Asen L., VELIOV, Vladimir M. Lyusternik-Graves Theorems for the Sum of a Lipschitz Function and a Set-valued Mapping. SIAM Journal on Control and Optimization, 2016, roč. 54, č. 6, s. 3273-3296. ISSN 0363-0129.
Datum vydání: 2016
Nakladatel: Society for Industrial and Applied Mathematics
Typ dokumentu: article
článek
URI: http://hdl.handle.net/11025/26005
https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-84959112113
ISSN: 0363-0129
Klíčová slova: věta o otevřeném zobrazení;věta o inverzní funkci;otevřenost s lineárním řádem;metrická regularita;striktní prederivace;feasibilita v teorii řízení
Klíčová slova v dalším jazyce: open mapping theorem;inverse function theorem;linear openness;metric regularity;strict prederivative;feasibility in control
Abstrakt: In a paper of 1950 Graves proved that for a function f acting between Banach spaces and an interior point x in its domain, if there exists a continuous linear mapping A which is surjective and the Lipschitz modulus of the difference f-A at x is sufficiently small, then f is (linearly) open at x. This is an extension of the Banach open mapping principle from continuous linear mappings to Lipschitz functions. A closely related result was obtained earlier by Lyusternik for smooth functions. In this paper, we obtain Lyusternik--Graves theorems for mappings of the form f+F, where f is a Lipschitz continuous function around x and F is a set-valued mapping. Roughly, we give conditions under which the mapping f+F is linearly open at x for y provided that for each element A of a certain set of continuous linear operators the mapping f(x) +A(. - x) + F is linearly open at x for y. In the case when F is the zero mapping, as corollaries we obtain the theorem of Graves as well as open mapping theorems by Pourciau and Páles, and a constrained open mapping theorem by Cibulka and Fabian. From the general result we also obtain a nonsmooth inverse function theorem proved recently by Cibulka and Dontchev. Application to Nemytskii operators and a feasibility mapping in control are presented.
Graves ve svém článku z roku 1950 dokázal, že zobrazení f mezi Banachovými prostory, které je definované v okolí referenčního bodu x a pro které existuje spojitý lineární operátor A takový, že lipschitzovský modulus rozdílu f-A v referenčním bodě x je dostatečně malý, je otevřené v bodě x s lineárním řádem. Jedná se o zobecnění Banachovy věty o otevřeném zobrazení pro spojitý lineární operátor na lipschitzovsky spojité funkce. Podobný výsledek, pro případ hladkého zobrazení, byl dokázan dříve Lyusternikem. V článku je dokázána Lyusternikova-Gravesova věta pro zobrazení f+F, kde f je lipschitzovsky spojitá funkce na okolí bodu x a F je mnohoznačné zobrazení. Jsou prezentovány podmínky zajišťující, že zobrazení f + F je otevřené s lineárním řádem za předpokladu, že pro každý prvek A z určité množiny spojitých lineárních operátorů je zobrazení f(x) +A(. - x) + F otevřené s lineárním řádem v bodě x pro y. Pokud F je identicky nulové, dostáváme jakožto důsledek Gravesovu větu, věty o otevřeném zobrazení Pourciaua a Pálese, a větu o otevřeném zobrazení pro zobrazení s omezující množinou Cibulky a Fabiana. Dále pak dostáváme také větu o inverzní funkci pro nehladká zobrazení dokázanou nedávno Cibulkou a Dontchevem. V závěru je prezentována aplikace na Nemytského operátory a jistá zobrazení z teorie řízení.
Práva: © Society for Industrial and Applied Mathematics
Vyskytuje se v kolekcích:Články / Articles (FAV)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Lyusternik-Graves Theorems for the Sum of a Lipschitz Function and a Set-valued Mapping.pdf404,05 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/26005

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD