Title: On maximum and comparison principles for parabolic problems with the p-Laplacian
Authors: Bobkov, Vladimír
Takáč, Peter
Citation: BOBKOV, V., TAKÁČ, P. On maximum and comparison principles for parabolic problems with the p-Laplacian. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-Matematicas, 2019, roč. 113, č. 2, s. 1141-1158. ISSN 1578-7303.
Issue Date: 2019
Publisher: Springer
Document type: postprint
URI: 2-s2.0-85064947052
ISSN: 1578-7303
Keywords in different language: p-Laplacian;Parabolic equation;Fast diffusion;Slow diffusion;Maximum principle;Comparison principle;Uniqueness
Abstract in different language: We investigate strong and weak versions of maximum and comparison principles for a class of quasilinear parabolic equations with the p-Laplacian ∂tu−Δpu=λ|u|p−2u+f(x,t) under zero boundary and nonnegative initial conditions on a bounded cylindrical domain Ω×(0,T), λ∈R, and f∈L∞(Ω×(0,T)). Several related counterexamples are given.
Rights: © Springer
Appears in Collections:Preprinty / Preprints (NTIS)
Postprinty / Postprints (NTIS)

Files in This Item:
File Description SizeFormat 
1803.09562.pdf340,27 kBAdobe PDFView/Open
BobkovTakac_SCP_2018_author-copy.pdf793,76 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/34826

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD