Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMautner Pavel, Ing. Ph.D.
dc.contributor.authorMochura, Pavel
dc.contributor.refereeMouček Roman, Ing. Ph.D.
dc.date.accepted2019-8-27
dc.date.accessioned2020-07-17T13:49:26Z-
dc.date.available2018-10-10
dc.date.available2020-07-17T13:49:26Z-
dc.date.issued2019
dc.date.submitted2019-6-27
dc.identifier79504
dc.identifier.urihttp://hdl.handle.net/11025/38281
dc.description.abstractKontinuální EEG aktivita u měřených subjektů obsahuje různé vzory podle toho, co měřený subjekt vykonával. ERD a ERS jsou příklady takovýchto vzorů, které souvisejí s pohybem ruky (prstu, nohy). Tato práce se zabývá detekcí pohybu na základě ERD/ERS vzorů. Spojením ERD/ERS vznikají příznakové vektory, které jsou klasifikovány neuronovou sítí. Výsledná neuronová síť se skládá z jedné vstupní a výstupní vrstvy a ze dvou skrytých vrstev, kde první skrytá vrstva obsahuje 3 000 neuronů a druhá skrytá vrstva 1 500 neuronů. Pro trénování této neuronové sítě je použita trénovací množina příznakových vektorů a pro následné nastavování vah je použit algoritmus Backpropagation. S tímto nastavením a trénováním je neuronová síť schopna klasifikovat pohyb v EEG záznamu s průměrnou přesností 79,92%.cs
dc.format48 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isocscs
dc.publisherZápadočeská univerzita v Plznics
dc.rightsPlný text práce je přístupný bez omezení.cs
dc.subjectelektroencefalografiecs
dc.subjecterd/erscs
dc.subjectpřípravné evokované potenciálycs
dc.subjectneuronová síťcs
dc.subjectklasifikace eeg signálucs
dc.subjectbackpropagationcs
dc.subjectpříznakové vektorycs
dc.titleNávrh jednoduchého klasifikátoru pro detekci změn spektrálních vlastností EEG (tzv. ERD/ERS) v souvislosti s pohybem ruky.cs
dc.title.alternativeDesign of a simple classificator for detecting changes of spectral properties of EEG (ERD/ERS) concerning hand movement.en
dc.typebakalářská prácecs
dc.thesis.degree-nameBc.cs
dc.thesis.degree-levelBakalářskýcs
dc.thesis.degree-grantorZápadočeská univerzita v Plzni. Fakulta aplikovaných vědcs
dc.thesis.degree-programInženýrská informatikacs
dc.description.resultObhájenocs
dc.rights.accessopenAccessen
dc.description.abstract-translatedContinual EEG activity in the measured subjects includes various types according to what the subject performed. ERD and ERS are examples of such types related to hand motion (finger or foot). This thesis deals with the detection of motion based on the ERD/ERS patterns. Through the connection of ERD/ERS, specific vectors which are classified by neural network are created. The resulting neural network consists of one input and one output layer and two hidden layers. The first hidden layer contains 3,000 neurons and the other one 1,500 neurons. A training set of specific vectors is used for the training of this neural network and the Backpropagation algorithm is used for the subsequent adjustment of weight. Within this setting and training, the neural network is able to classify motion in an EEG record with an average accuracy of 79.92%.en
dc.subject.translatedelectroencephalographyen
dc.subject.translatederd/ersen
dc.subject.translatedbereitschaftspotentialsen
dc.subject.translatedneural networken
dc.subject.translatedeeg signal classificationen
dc.subject.translatedbackpropagationen
dc.subject.translatedfeature vectorsen
Appears in Collections:Bakalářské práce / Bachelor´s works (KIV)

Files in This Item:
File Description SizeFormat 
A15B0097P.pdfPlný text práce1,72 MBAdobe PDFView/Open
A15B0097P Posudek.pdfPosudek oponenta práce37,42 kBAdobe PDFView/Open
A15B0097P Hodnoceni.pdfPosudek vedoucího práce29,37 kBAdobe PDFView/Open
A15B0097P Obhajoba.pdfPrůběh obhajoby práce53,56 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/38281

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.