Title: Lower Bounds In Estimation Fusion With Partial Knowledge of Correlations
Authors: Ajgl, Jiří
Straka, Ondřej
Citation: AJGL, J. STRAKA, O. Lower Bounds In Estimation Fusion With Partial Knowledge of Correlations. In Proceedings of the 2021 IEEE International Conference on Multisensor Fusion and Integration (MFI 2021). Karlsruhe, Germany: IEEE, 2021. s. 1-6. ISBN: 978-1-66544-521-4 , ISSN: neuvedeno
Issue Date: 2021
Publisher: IEEE
Document type: konferenční příspěvek
URI: 2-s2.0-85122871772
ISBN: 978-1-66544-521-4
Keywords in different language: estimation fusion;partially known correlation;matrix bounds;Covariance Intersection
Abstract in different language: Mean square error matrices belong to key concepts in decentralised estimation. They assess the quality of estimates and are essential for the optimisation of the estimation fusion. In the case of a missing knowledge, sets of admissible matrices are replaced by their bounds and a robust fusion is applied. This paper prospects a specific partial knowledge of the sets of matrices. Upper bounds are constructed first. Then, the stress is laid on non-zero lower bounds, which do not exist in the fusion under completely unknown correlation. Limit cases are discussed on numerical examples and graphical illustrations are given.
Rights: Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
Appears in Collections:Konferenční příspěvky / Conference Papers (KKY)

Files in This Item:
File SizeFormat 
article_MFI2021_AjSt.pdf354,91 kBAdobe PDFView/Open    Request a copy

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/47134

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD