Název: Model-driven Security Engineering for FPGAs
Další názvy: Model-driven Security Engineering for FPGAs
Autoři: Vetter, Michael
Datum vydání: 2022
Nakladatel: Západočeská univerzita v Plzni
Typ dokumentu: disertační práce
URI: http://hdl.handle.net/11025/50464
Klíčová slova: fpga;bezpečnost;architektury odvozené od bezpečnostního modelu;strojové učení;formální kontrola bezpečnosti návrhu
Klíčová slova v dalším jazyce: fpga;security;model-driven architecture;machine learning;model checking
Abstrakt: Tato práce obsahuje analýzu a adaptaci vhodných metod zabezpečení, pocházejících ze softwarové domény, do světa FPGA. Metoda formalizace bezpečnostní výzvy FPGA je prezentována jazykem FPGASECML, specifickým pro danou doménu, vhodným pro modelování hrozeb zaměřených na systém a pro formální definování bezpečnostní politiky. Vytvoření vhodných obranných mechanismů vyžaduje inteligenci o agentech ohrožení, zejména o jejich motivaci a schopnostech. Konstrukce založené na FPGA jsou, stejně jako jakýkoli jiný IT systém, vystaveny různým agentům hrozeb po celou dobu jejich životnosti, což naléhavě vyžaduje potřebu vhodné a přizpůsobitelné bezpečnostní strategie. Systematická analýza návrhu založená na konceptu STRIDE poskytuje cenné informace o hrozbách a požadovaných mechanismech protiopatření. Minimalizace povrchu útoku je jedním z nezbytných kroků k vytvoření odolného designu. Konvenční paradigmata řízení přístupu mohou modelovat pravidla řízení přístupu v návrzích FPGA. Výběr vhodného závisí na složitosti a bezpečnostních požadavcích návrhu. Formální popis architektury FPGA a bezpečnostní politiky podporuje přesnou definici aktiv a jejich možných, povolených a zakázaných interakcí. Odstraňuje nejednoznačnost z modelu hrozby a zároveň poskytuje plán implementace. Kontrola modelu může být použita k ověření, zda a do jaké míry, je návrh v souladu s uvedenou bezpečnostní politikou. Přenesení architektury do vhodného modelu a bezpečnostní politiky do ověřitelných logických vlastností může být, jak je uvedeno v této práci, automatizované, zjednodušující proces a zmírňující jeden zdroj chyb. Posílení učení může identifikovat potenciální slabiny a kroky, které může útočník podniknout, aby je využil. Některé metody zde uvedené mohou být použitelné také v jiných doménách.
Abstrakt v dalším jazyce: The thesis provides an analysis and adaptation of appropriate security methods from the software domain into the FPGA world and combines them with formal verification methods and machine learning techniques. The deployment of appropriate defense mechanisms requires intelligence about the threat agents, especially their motivation and capabilities. FPGA based designs are, like any other IT system, exposed to different threat agents throughout the systems lifetime, urging the need for a suitable and adaptable security strategy. The systematic analysis of the design, based on the STRIDE concept, provides valuable insight into the threats and the mandated counter mechanisms. Minimizing the attack surface is one essential step to create a resilient design. Conventional access control paradigms can model access control rules in FPGA designs and thereby restrict the exposure of sensitive elements to untrustworthy ones. A method to formalize the FPGA security challenge is presented. FPGASECML is a domain-specific language, suitable for dataflow-centric threat modeling as well as the formal definition of an enforceable security policy. The formal description of the FPGA architecture and the security policy promotes a precise definition of the assets and their possible, allowed, and prohibited interactions. Formalization removes ambiguity from the threat model while providing a blueprint for the implementation. Model transformations allow the application of dedicated and proven tools to answer specific questions while minimizing the workload for the user. Model-checking can be applied to verify if, and to a certain degree when, a design complies with the stated security policy. Transferring the architecture into a suitable model and the security policy into verifiable logic properties can be, as demonstrated in the thesis, automated, simplifying the process and mitigating one source of error. Reinforcement learning, a machine learning method, can identify potential weaknesses and the steps an attacker may take to exploit them. The approach presented uses a Markov Decision Process in combination with a Qlearning algorithm.
Práva: Plný text práce je přístupný bez omezení
Vyskytuje se v kolekcích:Disertační práce / Dissertations (KIV)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
a_2_mvetter_thesis_final_body.pdfPlný text práce9,37 MBAdobe PDFZobrazit/otevřít
posudky-odp-Vetter.pdfPosudek oponenta práce281,68 kBAdobe PDFZobrazit/otevřít
protokol-odp-vetter-STAG.pdfPrůběh obhajoby práce238,52 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/50464

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.