Title: An iterative method for rational pole curve fitting
Authors: Chambelland, J. C.
Daniel, M.
Brun, J. M.
Citation: WSCG '2006: Short Papers Proceedings: The 14-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2006: University of West Bohemia, Plzen, Czech Republic, January 31 - February 2, 2006, p. 39-46.
Issue Date: 2006
Publisher: Václav Skala - UNION Agency
Document type: konferenční příspěvek
URI: http://wscg.zcu.cz/WSCG2006/Papers_2006/Short/!WSCG2006_Short_Proceedings_Final.pdf
ISBN: 80-86943-05-4
Keywords: grafické algoritmy;iterační metoda;metoda nejmenších čtverců
Keywords in different language: graphic algorithms;iteration methods;least-square fitting
Abstract: This paper adresses the problem of least-square fitting with rational pole curves. The issue is to minimize a sum of squared Euclidean norms with respect to three types of unknowns: the control points, the node values, and the weights. A new iterative algorithm is proposed to solve this problem. The method alternates between three steps to converge towards a solution. One step uses the projection of the data points on the approximant to improve the node values, the two others use a gradient based technique to update the control point positions and the weight values. Experimental results are proposed with rational Bézier and NURBS curves.
Rights: © Václav Skala - UNION Agency
Appears in Collections:WSCG '2006: Short Papers Proceedings

Files in This Item:
File Description SizeFormat 
Chambelland.pdfPlný text240,8 kBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/6589

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.